Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cerebellum ; 22(3): 394-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35414041

RESUMO

The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Tremor Essencial , Humanos , Marcha Atáxica/etiologia , Tremor , Consenso , Ataxia Cerebelar/complicações , Ataxia/complicações , Doenças Cerebelares/complicações , Marcha/fisiologia
2.
Cerebellum ; 18(3): 635-648, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30827014

RESUMO

The thalamus is a neural processor and integrator for the activities of the forebrain. Surprisingly, little is known about the roles of the "cerebellar" thalamus despite the anatomical observation that all the cortico-cerebello-cortical loops make relay in the main subnuclei of the thalamus. The thalamus displays a broad range of electrophysiological responses, such as neuronal spiking, bursting, or oscillatory rhythms, which contribute to precisely shape and to synchronize activities of cortical areas. We emphasize that the cerebellar thalamus deserves a renewal of interest to better understand its specific contributions to the cerebellar motor and associative functions, especially at a time where the anatomy between cerebellum and basal ganglia is being rewritten.


Assuntos
Cerebelo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Cerebelo/anatomia & histologia , Humanos , Vias Neurais/anatomia & histologia , Tálamo/anatomia & histologia
3.
Cerebellum ; 18(2): 203-211, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30276521

RESUMO

In this study, we used fMRI to identify brain regions associated with concentration (sustained attention) during a motor preparation task. In comparison with a non-concentration task, increased activities were observed (P < 0.05, FWE-corrected P values) in cerebellar lobules VI and VII, motor cortex, pre-supplementary motor area (pre-SMA), thalamus, red nucleus (RN), and caudate nucleus (CN). Moreover, analysis of effective connectivity inter-areal (psychophysiological interactions) showed that during preparation, concentration-related brain activity increase was dependent on Cerebello-thalamo-pre-SMA-RN and Pre-SMA-CN-thalamo-M1 loops. We postulate that, while pre-SMA common to both loops is specifically involved in the movement preparation and readiness for voluntary movement through the striatum, the cerebellar lobule VI in conjunction with RN, likely through a cerebellar-rubro-olivary-cerebellar loop, might be implicated in concentration-related optimization of upcoming motor performances.


Assuntos
Cerebelo/fisiologia , Corpo Estriado/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Núcleo Rubro/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Núcleo Rubro/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
4.
Aging Clin Exp Res ; 28(2): 221-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26194423

RESUMO

BACKGROUND AND AIM: Although upper limb movements in the vertical plane are very commonly used during the activities of daily life, there is still a lack of a reliable and easy standardized procedure to quantify them. In particular, ageing is associated with a decline in performances of coordinated movements, but a tool to quantify this decline is missing. METHODS: We created a novel portable test called counting arm movement test (CAM test). Participants were asked to perform fast and accurate successive pointing movements towards two fixed targets (mechanical counters) located in a vertical plane in the parasagittal axis during three different time periods (15, 30, 45 s). Each upper limb was assessed separately. The test was evaluated in a group of 63 healthy subjects (mean age ± SD 49.1 ± 19.8 years; F/M 33/30; range 18-87 years). RESULTS: Motor performances (number of clicks) significantly decreased as a function of age for both the dominant side (age effect; linear regression; p < 0.0001 for 15, 30 and 45 s) and the non-dominant side (linear regression; p < 0.0001 for 15, 30 and 45 s). Performances on the dominant and non-dominant side were linearly correlated with the time periods (p < 0.0001 on both sides). The symmetry index (ratio of performance on the dominant side divided by performance on the non-dominant side) was correlated linearly and positively with the duration of the test (y = 0.002x + 1.053; p = 0.0056). We also found a linear relationship between upper limb length and motor performance on the non-dominant side for 15 s (p = 0.023) and 45 s (p = 0.041). The test was characterized by a very high correlation between the results obtained by two investigators during two successive sessions in a subgroup of 7 subjects (Pearson product moment correlation: 0.989 for the dominant side and 0.988 for the non-dominant side). CONCLUSION: The CAM test appears as a robust and low cost tool to quantify upper limb pointing movements. In particular, the test strongly discriminates the effects of age upon motor performances in upper limbs. Future studies are now required to establish the sensitivity, specificity and reliability of this procedure in selected neuromuscular or skeletal diseases affecting the elderly.


Assuntos
Envelhecimento/fisiologia , Destreza Motora/fisiologia , Extremidade Superior/fisiopatologia , Atividades Cotidianas , Adulto , Idoso , Braço , Feminino , Humanos , Cinesiologia Aplicada/métodos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Reprodutibilidade dos Testes , Análise e Desempenho de Tarefas
5.
Cerebellum Ataxias ; 1: 6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26331030

RESUMO

We report the case of a 25 year-old patient who underwent morphological and functional brain magnetic resonance imaging (fMRI) to investigate a left neocerebellar hypoplasia discovered incidentally. We compared brain activation during overt and covert finger movements, and haptic discrimination. The contralateral cerebellar hemisphere compensated for mental imagery of hand movements and haptic discrimination, but not for motor execution. Moreover, the resting-state functional connectivity did not show compensatory functional coherence between the right cerebellum and cerebral areas connected with the hypoplastic cerebellum. Our case illustrates for the first time that cerebellar compensatory recruitment is an active, specific process related to task complexity and under the control of executive networks.

6.
Brain Imaging Behav ; 5(2): 137-48, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21369855

RESUMO

The cerebral and cerebellar networks involved in execution and mental imagery of the same sequential finger movements performed with the non-dominant hand were assessed by 3T functional magnetic resonance imaging using multivariate model-free analysis. Eight right-handed healthy volunteers successively performed execution and mental imagery tasks (sequential thumb to fingers opposition). The same data were analyzed by using (1) the linear General Model (p < 0.05 corrected), and (2) probabilistic tensorial independent component analysis (TICA). TICA confirmed that overt movement execution and motor imagery share a common network mainly including: premotor, parietal, insular, temporal, cerebellar cortices and putamen. Motor imagery specifically and bilaterally recruited frontopolar, prefrontal, cingulate, medial insula, neocerebellar cortices and precuneus. Non-dominant hand movements induced bilateral brain and cerebellar activation. In comparison with GLM, TICA identified a more widespread and bilateral network especially during motor imagery. TICA revealed that motor imagery also recruits frontopolar precuneal and occipital cortices, rostral M1/S1 corresponding to the hand somatotopic representation, thalamus and cerebellar lobule VIII. TICA also showed concomitant activation of (1) a cerebello-thalamo-cortical network during motor execution, and (2) a control executive network during imagination. TICA therefore allows precise identification of the brain networks collaborating in the same performance. TICA constitutes a valuable tool to assess and improve detection of brain networks engaged in mental imagery in comparison with GLM.


Assuntos
Encéfalo/fisiologia , Dedos/fisiologia , Imaginação/fisiologia , Modelos Estatísticos , Movimento , Rede Nervosa/fisiologia , Adulto , Cerebelo/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Análise Multivariada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA