Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 31(2): 310-321.e5, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157020

RESUMO

Corticothalamic (CT) neurons comprise the largest component of the descending sensory corticofugal pathway, but their contributions to brain function and behavior remain an unsolved mystery. To address the hypothesis that layer 6 (L6) CTs may be activated by extra-sensory inputs prior to anticipated sounds, we performed optogenetically targeted single-unit recordings and two-photon imaging of Ntsr1-Cre+ L6 CT neurons in the primary auditory cortex (A1) while mice were engaged in an active listening task. We found that L6 CTs and other L6 units began spiking hundreds of milliseconds prior to orofacial movements linked to sound presentation and reward, but not to other movements such as locomotion, which were not linked to an explicit behavioral task. Rabies tracing of monosynaptic inputs to A1 L6 CT neurons revealed a narrow strip of cholinergic and non-cholinergic projection neurons in the external globus pallidus, suggesting a potential source of motor-related input. These findings identify new pathways and local circuits for motor modulation of sound processing and suggest a new role for CT neurons in active sensing.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Movimento/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Globo Pálido/fisiologia , Microscopia Intravital , Masculino , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Imagem Óptica , Recompensa , Técnicas Estereotáxicas , Tálamo/citologia
2.
Science ; 356(6345): 1352-1356, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663494

RESUMO

Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase-dependent adenosine production or A1-adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.


Assuntos
Adenosina/metabolismo , Córtex Auditivo/metabolismo , Transdução de Sinais , 5'-Nucleotidase/metabolismo , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Agonistas do Receptor A1 de Adenosina/administração & dosagem , Antagonistas do Receptor A1 de Adenosina/administração & dosagem , Animais , Percepção Auditiva , Proteínas Ligadas por GPI/metabolismo , Camundongos , Plasticidade Neuronal , Piperidinas/administração & dosagem , Piridazinas/administração & dosagem , Receptor A1 de Adenosina/metabolismo , Tálamo/metabolismo
3.
J Neurosci ; 35(10): 4140-50, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762661

RESUMO

The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Lobo Temporal/fisiologia , Vigília , Estimulação Acústica , Animais , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Psicoacústica , Lobo Temporal/anatomia & histologia
4.
Curr Opin Neurobiol ; 31: 230-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594376

RESUMO

Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Audição/fisiologia , Atividade Motora/fisiologia , Dinâmica não Linear , Estimulação Acústica , Animais , Atenção , Humanos
5.
Cereb Cortex ; 23(4): 775-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22490549

RESUMO

Auditory stimulus representations are dynamically maintained by ascending and descending projections linking the auditory cortex (Actx), medial geniculate body (MGB), and inferior colliculus. Although the extent and topographic specificity of descending auditory corticofugal projections can equal or surpass that of ascending corticopetal projections, little is known about the molecular mechanisms that guide their development. Here, we used in utero gene electroporation to examine the role of EphA receptor signaling in the development of corticothalamic (CT) and corticocollicular connections. Early in postnatal development, CT axons were restricted to a deep dorsal zone (DDZ) within the MGB that expressed low levels of the ephrin-A ligand. By hearing onset, CT axons had innervated surrounding regions of MGB in control-electroporated mice but remained fixed within the DDZ in mice overexpressing EphA7. In vivo neurophysiological recordings demonstrated a corresponding reduction in spontaneous firing rate, but no changes in sound-evoked responsiveness within MGB regions deprived of CT innervation. Structural and functional CT disruption occurred without gross alterations in thalamocortical connectivity. These data demonstrate a potential role for EphA/ephrin-A signaling in the initial guidance of corticofugal axons and suggest that "genetic rewiring" may represent a useful functional tool to alter cortical feedback without silencing Actx.


Assuntos
Córtex Auditivo , Vias Auditivas/fisiologia , Mapeamento Encefálico , Corpos Geniculados/fisiologia , Receptor EphA7/metabolismo , Transdução de Sinais/fisiologia , Estimulação Acústica , Fatores Etários , Aminoácidos , Animais , Animais Recém-Nascidos , Córtex Auditivo/embriologia , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/metabolismo , Axônios/fisiologia , Eletroencefalografia , Eletroporação , Embrião de Mamíferos , Potenciais Evocados Auditivos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptor EphA7/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
6.
Hear Res ; 271(1-2): 133-46, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20116421

RESUMO

Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Córtex Auditivo/anatomia & histologia , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Humanos , Modelos Neurológicos , Tálamo/fisiologia
8.
Hear Res ; 239(1-2): 107-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18342463

RESUMO

The primate auditory cortex contains three interconnected regions (core, belt, parabelt), which are further subdivided into discrete areas. The caudomedial area (CM) is one of about seven areas in the belt region that has been the subject of recent anatomical and physiological studies conducted to define the functional organization of auditory cortex. The main goal of the present study was to examine temporal coding in area CM of marmoset monkeys using two related classes of acoustic stimuli: (1) marmoset twitter calls; and (2) frequency-modulated (FM) sweep trains modeled after the twitter call. The FM sweep trains were presented at repetition rates between 1 and 24 Hz, overlapping the natural phrase frequency of the twitter call (6-8 Hz). Multiunit recordings in CM revealed robust phase-locked responses to twitter calls and FM sweep trains. For the latter, phase-locking quantified by vector strength (VS) was best at repetition rates between 2 and 8 Hz, with a mean of about 5 Hz. Temporal response patterns were not strictly phase-locked, but exhibited dynamic features that varied with the repetition rate. To examine these properties, classification of the repetition rate from the temporal response pattern evoked by twitter calls and FM sweep trains was examined by Fisher's linear discrimination analysis (LDA). Response classification by LDA revealed that information was encoded not only by phase-locking, but also other components of the temporal response pattern. For FM sweep trains, classification was best for repetition rates from 2 to 8 Hz. Thus, the majority of neurons in CM can accurately encode the envelopes of temporally complex stimuli over the behaviorally-relevant range of the twitter call. This suggests that CM could be engaged in processing that requires relatively precise temporal envelope discrimination, and supports the hypothesis that CM is positioned at an early stage of processing in the auditory cortex of primates.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas , Estimulação Acústica , Animais , Córtex Auditivo/anatomia & histologia , Córtex Auditivo/patologia , Percepção Auditiva , Mapeamento Encefálico , Callithrix , Potenciais Evocados Auditivos , Aprendizagem , Modelos Estatísticos , Neurônios/metabolismo , Som , Localização de Som , Fatores de Tempo , Vocalização Animal
9.
J Comp Neurol ; 502(6): 894-923, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17447261

RESUMO

The caudal medial auditory area (CM) has anatomical and physiological features consistent with its role as a first-stage (or "belt") auditory association cortex. It is also a site of multisensory convergence, with robust somatosensory and auditory responses. In this study, we investigated the cerebral cortical sources of somatosensory and auditory inputs to CM by injecting retrograde tracers in macaque monkeys. A companion paper describes the thalamic connections of CM (Hackett et al., J. Comp. Neurol. [this issue]). The likely cortical sources of somatosensory input to CM were the adjacent retroinsular cortex (area Ri) and granular insula (Ig). In addition, CM had reliable connections with areas Tpt and TPO, which are sites of multisensory integration. CM also had topographic connections with other auditory areas. As expected, connections with adjacent caudal auditory areas were stronger than connections with rostral areas. Surprisingly, the connections with the core were concentrated along its medial side, suggesting that there may be a medial-lateral division of function within the core. Additional injections into caudal lateral auditory area (CL) and Tpt showed similar connections with Ri, Ig, and TPO. In contrast to CM injections, these lateral injections had inputs from parietal area 7a and had a preferential connection with the lateral (gyral) part of Tpt. Taken together, the findings indicate that CM may receive somatosensory input from nearby areas along the fundus of the lateral sulcus. The differential connections of CM compared with adjacent areas provide additional evidence for the functional specialization of the individual auditory belt areas.


Assuntos
Vias Aferentes/anatomia & histologia , Córtex Auditivo/anatomia & histologia , Percepção Auditiva/fisiologia , Macaca mulatta/anatomia & histologia , Estimulação Acústica , Vias Aferentes/fisiologia , Animais , Córtex Auditivo/fisiologia , Axônios/fisiologia , Axônios/ultraestrutura , Mapeamento Encefálico , Toxina da Cólera , Estimulação Elétrica , Eletrofisiologia , Feminino , Corantes Fluorescentes , Macaca mulatta/fisiologia , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Tato/fisiologia
10.
J Comp Neurol ; 502(6): 924-52, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17444488

RESUMO

Recent studies of macaque monkey auditory cortex have revealed convergent auditory and somatosensory activity in the caudomedial area (CM) of the belt region. In the present study and its companion (Smiley et al., J. Comp. Neurol. [this issue]), neuroanatomical tracers were injected into CM and adjacent areas of the superior temporal plane to identify sources of auditory and somatosensory input to this region. Other than CM, target areas included: A1, caudolateral belt (CL), retroinsular (Ri), and temporal parietotemporal (Tpt). Cells labeled by injections of these areas were distributed mainly among the ventral (MGv), posterodorsal (MGpd), anterodorsal (MGad), and magnocellular (MGm) divisions of the medial geniculate complex (MGC) and several nuclei with established multisensory features: posterior (Po), suprageniculate (Sg), limitans (Lim), and medial pulvinar (PM). The principal inputs of CM were MGad, MGv, and MGm, with secondary inputs from multisensory nuclei. The main inputs of CL were Po and MGpd, with secondary inputs from MGad, MGm, and multisensory nuclei. A1 was dominated by inputs from MGv and MGad, with light multisensory inputs. The input profile of Tpt closely resembled that of CL, but with reduced MGC inputs. Injections of Ri also involved CM but strongly favored MGm and multisensory nuclei, with secondary inputs from MGC and the inferior division (VPI) of the ventroposterior complex (VP). The results indicate that the thalamic inputs of areas in the caudal superior temporal plane arise mainly from the same nuclei, but in different proportions. Somatosensory inputs may reach CM and CL through MGm or the multisensory nuclei but not VP.


Assuntos
Vias Aferentes/anatomia & histologia , Córtex Auditivo/anatomia & histologia , Percepção Auditiva/fisiologia , Macaca mulatta/anatomia & histologia , Tálamo/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Mapeamento Encefálico , Toxina da Cólera , Feminino , Corantes Fluorescentes , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/fisiologia , Macaca mulatta/fisiologia , Masculino , Orientação/fisiologia , Núcleos Posteriores do Tálamo/anatomia & histologia , Núcleos Posteriores do Tálamo/fisiologia , Pulvinar/anatomia & histologia , Pulvinar/fisiologia , Tálamo/fisiologia , Tato/fisiologia , Núcleos Ventrais do Tálamo/anatomia & histologia , Núcleos Ventrais do Tálamo/fisiologia
11.
J Comp Neurol ; 496(1): 27-71, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16528722

RESUMO

The auditory cortex of primates contains a core region of three primary areas surrounded by a belt region of secondary areas. Recent neurophysiological studies suggest that the belt areas medial to the core have unique functional roles, including multisensory properties, but little is known about their connections. In this study and its companion, the cortical and subcortical connections of the core and medial belt regions of marmoset monkeys were compared to account for functional differences between areas and refine our working model of the primate auditory cortex. Anatomical tracer injections targeted two core areas (A1 and R) and two medial belt areas (rostromedial [RM] and caudomedial [CM]). RM and CM had topographically weighted connections with all other areas of the auditory cortex ipsilaterally, but these were less widespread contralaterally. CM was densely connected with caudal auditory fields, the retroinsular (Ri) area of the somatosensory cortex, the superior temporal sulcus (STS), and the posterior parietal and entorhinal cortex. The connections of RM favored rostral auditory areas, with no clear somatosensory inputs. RM also projected to the lateral nucleus of the amygdala and tail of the caudate nucleus. A1 and R had topographically weighted connections with medial and lateral belt regions, infragranular inputs from the parabelt, and weak connections with fields outside the auditory cortex. The results indicated that RM and CM are distinct areas of the medial belt region with direct inputs from the core. CM also has somatosensory input and may correspond to an area on the posteromedial transverse gyrus of humans and the anterior auditory field of other mammals.


Assuntos
Córtex Auditivo/anatomia & histologia , Axônios/ultraestrutura , Callithrix/anatomia & histologia , Vias Neurais/anatomia & histologia , Estimulação Acústica , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/fisiologia , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Axônios/fisiologia , Biotina/análogos & derivados , Mapeamento Encefálico , Callithrix/fisiologia , Núcleo Caudado/anatomia & histologia , Núcleo Caudado/fisiologia , Toxina da Cólera , Dextranos , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/fisiologia , Lateralidade Funcional/fisiologia , Masculino , Vias Neurais/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia
12.
J Comp Neurol ; 496(1): 72-96, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16528728

RESUMO

In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.


Assuntos
Córtex Auditivo/anatomia & histologia , Axônios/ultraestrutura , Callithrix/anatomia & histologia , Vias Neurais/anatomia & histologia , Tálamo/anatomia & histologia , Animais , Córtex Auditivo/fisiologia , Axônios/fisiologia , Biotina/análogos & derivados , Mapeamento Encefálico , Callithrix/fisiologia , Toxina da Cólera , Dextranos , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/fisiologia , Colículos Inferiores/anatomia & histologia , Colículos Inferiores/fisiologia , Masculino , Vias Neurais/fisiologia , Núcleos Posteriores do Tálamo/anatomia & histologia , Núcleos Posteriores do Tálamo/fisiologia , Pulvinar/anatomia & histologia , Pulvinar/fisiologia , Tálamo/fisiologia
13.
J Neurophysiol ; 93(1): 22-34, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15342713

RESUMO

The purpose of this study was to compare response properties of two adjacent areas of the marmoset monkey auditory cortex. Multiunit responses to 50 ms tones and broadband noise bursts (BBN) were recorded in the core area, A1, and the caudomedial belt area, CM, of ketamine-anesthetized animals. Neurons in A1 and CM exhibited robust low-threshold short-latency responses to BBN and tones, whereas neurons in adjoining lateral belt areas were poorly responsive or unresponsive to tones and noise. Except for a population of broadly tuned units in CM, the characteristic frequency (CF) could be determined for all recording sites in A1 and CM. Both areas were tonotopically organized and shared a high CF border. Whereas the tonotopic gradient in A1 was smooth and continuous across the field, the gradient in CM was discontinuous, and the intermediate CF range was underrepresented. For BBN stimuli, rate level functions were largely monotonic in A1 and CM. Response profiles were also similar in both areas. As a population, neurons in CM were distinguished from A1 by significantly shorter response latencies, lower thresholds, and broader tuning bandwidth at higher intensities. The results indicated that, while A1 and CM represent anatomically and physiologically distinct areas, their response profiles under anesthesia overlapped considerably compared with the lateral belt areas. Therefore refinements of current models of the primate auditory cortex may be needed to account for differences in organization among the auditory belt areas.


Assuntos
Córtex Auditivo/citologia , Neurônios/classificação , Neurônios/fisiologia , Ruído , Estimulação Acústica/métodos , Potenciais de Ação/efeitos da radiação , Animais , Córtex Auditivo/fisiologia , Limiar Auditivo , Mapeamento Encefálico , Callithrix , Relação Dose-Resposta à Radiação , Feminino , Masculino , Tempo de Reação/efeitos da radiação
14.
J Neurosci Methods ; 136(1): 77-85, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15126048

RESUMO

We describe a novel method for estimation of multivariate neuronal receptive fields that is based on least-squares (LS) regression. The method is shown to account for the relationship between the spike train of a given neuron, the activity of other neurons that are recorded simultaneously, and a variety of time-varying features of acoustic stimuli, e.g. spectral content, amplitude, and sound source direction. Vocalization-evoked neuronal responses from the marmoset auditory cortex are used to illustrate the method. Optimal predictions of single-unit activity were obtained by using the recent-time history of the target neuron and the concurrent activity of other simultaneously recorded neurons (R: 0.82 +/- 0.01, approximately 67% of variance). Predictions based on ensemble activity alone (R: 0.63 +/- 0.18) were equivalent to those based on the combination of ensemble activity and spectral features of the vocal calls (R: 0.61 +/- 0.24). This result suggests that all information derived from the spectrogram is embodied in ensemble activity and that there is a high level of redundancy in the marmoset auditory cortex. We also illustrate that the method allows for quantification of relative and shared contributions of each variable (spike train, spectral feature) to predictions of neuronal activity and describe a novel "neurolet" transform that arises from the method and that may serve as a tool for computationally efficient processing of natural sounds.


Assuntos
Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Estimulação Acústica/estatística & dados numéricos , Animais , Callithrix , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA