Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 12: 631092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717165

RESUMO

Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.


Assuntos
Asma/imunologia , Glucocorticoides/uso terapêutico , Inflamação/genética , Neutrófilos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Ozônio/efeitos adversos , Sistema Respiratório/efeitos dos fármacos , Animais , Asma/complicações , Asma/tratamento farmacológico , Asma/patologia , Resistência a Medicamentos , Glucocorticoides/farmacologia , Humanos , Inflamação/imunologia , Camundongos , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/imunologia
3.
Clin Vaccine Immunol ; 21(11): 1528-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209558

RESUMO

Influenza causes serious and sometimes fatal disease in individuals at risk due to advanced age or immunodeficiencies. Despite progress in the development of seasonal influenza vaccines, vaccine efficacy in elderly and immunocompromised individuals remains low. We recently developed a passive immunization strategy using an adeno-associated virus (AAV) vector to deliver a neutralizing anti-influenza antibody at the site of infection, the nasal airways. Here we show that young, old, and immunodeficient (severe combined immunodeficient [SCID]) mice that were treated intranasally with AAV9 vector expressing a modified version of the broadly neutralizing anti-influenza antibody FI6 were protected and exhibited no signs of disease following an intranasal challenge with the mouse-adapted H1N1 influenza strain A/Puerto Rico/8/1934(H1N1) (PR8) (Mt. Sinai strain). Nonvaccinated mice succumbed to the PR8 challenge due to severe weight loss. We propose that airway-directed AAV9 passive immunization against airborne infectious agents may be beneficial in elderly and immunocompromised patients, for whom there still exists an unmet need for effective vaccination against influenza.


Assuntos
Anticorpos Antivirais/imunologia , Terapia Biológica/métodos , Dependovirus/crescimento & desenvolvimento , Portadores de Fármacos/administração & dosagem , Imunização Passiva/métodos , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Administração Intranasal , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Hospedeiro Imunocomprometido , Camundongos Endogâmicos BALB C , Camundongos SCID , Análise de Sobrevida , Resultado do Tratamento
4.
Exp Lung Res ; 36(2): 75-84, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20205598

RESUMO

Evidence suggests inhibition of leukocyte trafficking mitigates, in part, ozone-induced inflammation. In the present study, the authors postulated that inhibition of myristoylated alanine-rich C kinase substrate (MARCKS), an 82-kDa protein with multiple biological roles, could inhibit ozone-induced leukocyte trafficking and cytokine secretions. BALB/c mice (n = 5/cohort) were exposed to ozone (100 ppb) or forced air (FA) for 4 hours. MARCKS-inhibiting peptides, MANS, BIO-11000, BIO-11006, or scrambled control peptide RNS, were intratracheally administered prior to ozone exposure. Ozone selectively enhanced bronchoalveolar lavage (BAL) levels of killer cells (KCs; 6 +/- 0.9-fold), interleukin-6 (IL-6; 12.7 +/- 1.9-fold), and tumor necrosis factor (TNF; 2.1 +/- 0.5-fold) as compared to cohorts exposed to FA. Additionally, ozone increased BAL neutrophils by 21% +/- 2% with no significant (P > .05) changes in other cell types. MANS, BIO-11000, and BIO-11006 significantly reduced ozone-induced KC secretion by 66% +/- 14%, 47% +/- 15%, and 71.1% +/- 14%, and IL-6 secretion by 69% +/- 12%, 40% +/- 7%, and 86.1% +/- 11%, respectively. Ozone-mediated increases in BAL neutrophils were reduced by MANS (86% +/- 7%) and BIO-11006 (84% +/- 2.5%), but not BIO-11000. These studies identify for the first time the novel potential of MARCKS protein inhibitors in abrogating ozone-induced increases in neutrophils, cytokines, and chemokines in BAL fluid. BIO-11006 is being developed as a treatment for chronic obstructive pulmonary disorder (COPD) and is currently being evaluated in a phase 2 clinical study.


Assuntos
Bronquite/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Infiltração de Neutrófilos/efeitos dos fármacos , Peptídeos/uso terapêutico , Animais , Bronquite/induzido quimicamente , Bronquite/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Substrato Quinase C Rico em Alanina Miristoilada , Peptídeos/farmacologia
5.
Environ Health Perspect ; 116(6): 799-805, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18560537

RESUMO

BACKGROUND: Ozone exposure induces airway neutrophilia and modifies innate immune monocytic cell-surface phenotypes in healthy individuals. High-dose inhaled corticosteroids can reduce O(3)-induced airway inflammation, but their effect on innate immune activation is unknown. OBJECTIVES: We used a human O(3) inhalation challenge model to examine the effectiveness of clinically relevant doses of inhaled corticosteroids on airway inflammation and markers of innate immune activation in healthy volunteers. METHODS: Seventeen O(3)-responsive subjects [>10% increase in the percentage of polymorphonuclear leukocytes (PMNs) in sputum, PMNs per milligram vs. baseline sputum] received placebo, or either a single therapeutic dose (0.5 mg) or a high dose (2 mg) of inhaled fluticasone proprionate (FP) 1 hr before a 3-hr O(3) challenge (0.25 ppm) on three separate occasions at least 2 weeks apart. Lung function, exhaled nitric oxide, sputum, and systemic biomarkers were assessed 1-5 hr after the O(3) challenge. To determine the effect of FP on cellular function, we assessed sputum cells from seven subjects by flow cytometry for cell-surface marker activation. RESULTS: FP had no effect on O(3)-induced lung function decline. Compared with placebo, 0.5 mg and 2 mg FP reduced O(3)-induced sputum neutrophilia by 18% and 35%, respectively. A similar effect was observed on the airway-specific serum biomarker Clara cell protein 16 (CCP16). Furthermore, FP pretreatment significantly reduced O(3)-induced modification of CD11b, mCD14, CD64, CD16, HLA-DR, and CD86 on sputum monocytes in a dose-dependent manner. CONCLUSIONS: This study confirmed and extended data demonstrating the protective effect of FP against O(3)-induced airway inflammation and immune cell activation.


Assuntos
Androstadienos/uso terapêutico , Inflamação/prevenção & controle , Pulmão/efeitos dos fármacos , Ozônio/intoxicação , Adulto , Anti-Inflamatórios/uso terapêutico , Antígeno B7-2/metabolismo , Antígeno CD11b/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Citometria de Fluxo , Fluticasona , Antígenos HLA-DR/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores de IgG/metabolismo , Escarro/citologia , Escarro/efeitos dos fármacos , Escarro/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA