Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 15(3): e0339623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38353560

RESUMO

Enterococcus faecium is a member of the human gastrointestinal (GI) microbiota but can also cause invasive infections, especially in immunocompromised hosts. Enterococci display intrinsic resistance to many antibiotics, and most clinical E. faecium isolates have acquired vancomycin resistance, leaving clinicians with a limited repertoire of effective antibiotics. As such, vancomycin-resistant E. faecium (VREfm) has become an increasingly difficult to treat nosocomial pathogen that is often associated with treatment failure and recurrent infections. We followed a patient with recurrent E. faecium bloodstream infections (BSIs) of increasing severity, which ultimately became unresponsive to antibiotic combination therapy over the course of 7 years. Whole-genome sequencing (WGS) showed that the patient was colonized with closely related E. faecium strains for at least 2 years and that invasive isolates likely emerged from a large E. faecium population in the patient's gastrointestinal (GI) tract. The addition of bacteriophage (phage) therapy to the patient's antimicrobial regimen was associated with several months of clinical improvement and reduced intestinal burden of VRE and E. faecium. In vitro analysis showed that antibiotic and phage combination therapy improved bacterial growth suppression compared to therapy with either alone. Eventual E. faecium BSI recurrence was not associated with the development of antibiotic or phage resistance in post-treatment isolates. However, an anti-phage-neutralizing antibody response occurred that coincided with an increased relative abundance of VRE in the GI tract, both of which may have contributed to clinical failure. Taken together, these findings highlight the potential utility and limitations of phage therapy to treat antibiotic-resistant enterococcal infections. IMPORTANCE: Phage therapy is an emerging therapeutic approach for treating bacterial infections that do not respond to traditional antibiotics. The addition of phage therapy to systemic antibiotics to treat a patient with recurrent E. faecium infections that were non-responsive to antibiotics alone resulted in fewer hospitalizations and improved the patient's quality of life. Combination phage and antibiotic therapy reduced E. faecium and VRE abundance in the patient's stool. Eventually, an anti-phage antibody response emerged that was able to neutralize phage activity, which may have limited clinical efficacy. This study demonstrates the potential of phages as an additional option in the antimicrobial toolbox for treating invasive enterococcal infections and highlights the need for further investigation to ensure phage therapy can be deployed for maximum clinical benefit.


Assuntos
Bacteriemia , Bacteriófagos , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/uso terapêutico , Bacteriófagos/fisiologia , Qualidade de Vida , Enterococcus , Bacteriemia/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-33820773

RESUMO

We compared the in vitro susceptibility of multidrug-resistant Pseudomonas aeruginosa isolates collected before and after treatment-emergent resistance to ceftolozane-tazobactam. Median baseline and postexposure ceftolozane-tazobactam MICs were 2 and 64 µg/ml, respectively. Whole-genome sequencing identified treatment-emergent mutations in ampC among 79% (11/14) of paired isolates. AmpC mutations were associated with cross-resistance to ceftazidime-avibactam but increased susceptibility to piperacillin-tazobactam and imipenem. A total of 81% (12/16) of ceftolozane-tazobactam-resistant isolates with ampC mutations were susceptible to imipenem-relebactam.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-28630202

RESUMO

We determined imipenem, imipenem-relebactam, ceftazidime, and ceftazidime-avibactam MICs against 100 CRE isolates that underwent whole-genome sequencing. Klebsiella pneumoniae carbapenemases (KPCs) were the most common carbapenemases. Forty-six isolates carried extended-spectrum ß-lactamases (ESBLs). With the addition of relebactam, imipenem susceptibility increased from 8% to 88%. With the addition of avibactam, ceftazidime susceptibility increased from 0% to 85%. Neither imipenem-relebactam nor ceftazidime-avibactam was active against metallo-ß-lactamase (MBL) producers. Ceftazidime-avibactam (but not imipenem-relebactam) was active against OXA-48-like producers, including a strain not harboring any ESBL. Major OmpK36 porin mutations were independently associated with higher imipenem-relebactam MICs (P < 0.0001) and showed a trend toward independent association with higher ceftazidime-avibactam MICs (P = 0.07). The presence of variant KPC-3 was associated with ceftazidime-avibactam resistance (P < 0.0001). In conclusion, imipenem-relebactam and ceftazidime-avibactam had overlapping spectra of activity and niches in which each was superior. Major OmpK36 mutations in KPC-K. pneumoniae may provide a foundation for stepwise emergence of imipenem-relebactam and ceftazidime-avibactam resistance.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Ceftazidima/farmacologia , Imipenem/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/crescimento & desenvolvimento , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Porinas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA