RESUMO
OBJECTIVE: We examined the effects of photobiomodulation (PBM) on stereological parameters, and gene expression of Runt-related transcription factor 2 (RUNX2), osteocalcin, and receptor activator of nuclear factor kappa-B ligand (RANKL) in repairing tissue of tibial bone defect in streptozotocin (STZ)-induced type 1 diabetes mellitus (TIDM) in rats during catabolic response of fracture healing. BACKGROUND DATA: There were conflicting results regarding the efficacy of PBM on bone healing process in healthy and diabetic animals. MATERIALS AND METHODS: Forty-eight rats have been distributed into four groups: group 1 (healthy control, no TIDM and no PBM), group 2 (healthy test, no TIDM and PBM), group 3 (diabetic control, TIDM and no PBM), and group 4 (diabetic test, no TIDM and PBM). TIDM was induced in the groups 3 and 4. A partial bone defect in tibia was made in all groups. The bone defects of groups second and fourth were irradiated by a laser (890 nm, 80 Hz, 1.5 J/cm2). Thirty days after the surgery, all bone defects were extracted and were submitted to stereological examination and real-time polymerase chain reaction (RT-PCR). RESULTS: PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats. CONCLUSIONS: PBM significantly increased many stereological parameters of bone repair in an STZ-induced TIDM during catabolic response of fracture healing. Further RT-PCR test demonstrated that bone repair was modulated in diabetic rats during catabolic response of fracture healing by significant increase in mRNA expression of RUNX2, and osteocalcin compared to healthy control rats. PBM also decreased osteocalcin mRNA expression in TIDM rats.
Assuntos
Consolidação da Fratura/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Osteotomia , Tíbia/efeitos da radiação , Fraturas da Tíbia/radioterapia , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Feminino , Consolidação da Fratura/fisiologia , Osteocalcina/biossíntese , Ligante RANK/biossíntese , Ratos , Ratos Wistar , Tíbia/fisiopatologia , Fraturas da Tíbia/complicações , Fraturas da Tíbia/fisiopatologia , Fraturas da Tíbia/terapiaRESUMO
Postmenopausal osteoporosis (PMOP) is considered by decreased bone strength that escalates the threat of fractures. Positive effects of photobiomodulation (PBM) with pulse wave have been demonstrated in cell culture and animal models. The aim of this study was to assess the in vivo effects of PBM on viability and calcium ion release of ovariectomy induced osteoporosis (OVX) - bone marrow derived mesenchymal stem cells (BMMSCs). MATERIAL AND METHODS: 18 female rats were distributed into the following groups: 1) control healthy, 2) LASER-healthy (890nm, 80Hz, 1.5J/cm2, three days weekly, 60days), 3) control OVX, 4) LASER-OVX, 5) Alendronate (Alen.)-OVX [0.5mg/kg, 5days per week, 60days], and 6) Alen.+LASER-OVX. Ovariectomy was done on rats of groups 3, 4, 5 and 6. After that all rats were euthanized and their MSC harvested and cultured in complete osteogenic medium. In all groups, BMMSC viability, and calcium colorimetric assay were performed. RESULTS: We observed a significant increase in optical density (OD) of BMMSCs viability in LASER healthy group compared to control-OVX, Alen.-OVX, LASER-OVX, LASER+Alen.-OVX, groups. LASER+Alen.-OVX group displayed a significant escalation in OD of BMMSCs viability compared to LASER-OVX, Alen.-OVX, and control-OVX groups. There were a significant increase in calcium ion release of LASER-healthy group compared to control healthy, control-OVX, Alen.-OVX, LASER-OVX, and LASER+Alen.-OVX groups. LASER+Alen.-OVX group displayed a significant escalation in calcium ion release compared to LASER-OVX, Alen.-OVX, and control-OVX groups. CONCLUSION: Pulse wave (PW) PBM significantly stimulated viability and cell proliferation of healthy BMMSCs compared to those of control-OVX, OVX-alendronate, OVX-LASER, and LASER+alendronate-OVX. In addition stimulatory effect of LASER+alendronate on viability and cell proliferation of OVX-BMMSCs compared to those of control-OVX, alendronate-OVX, and LASER-OVX groups were found.