Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35205124

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to inflict chaos globally. The emergence of a novel Omicron variant (B.1.1.529) in South Africa harbors 30 mutations in the spike protein. The variant is distinguished from other variants of concern (VOCs) with an increased (15) number of mutations in the receptor-binding domain (RBD) and suggests higher chances of causing reinfections. Initial reports also claimed that this variant escapes all the neutralizing antibodies, thus demanding a novel strategy against it. Thus, in this study, we performed a computational molecular screening against the RBD of the Omicron (B.1.1.529) variant and assessed the binding affinity of potent drugs against the RBD. The multi-steps screening of the South African Natural Compounds Database (SANCDB) revealed four medicinal compounds as excellent (potential) anti-viral agents against the Omicron variant, namely SANC00944, SANC01032, SANC00992, and SANC00317. The simulation analysis of these compounds in complex with the RBD demonstrated stable dynamics and structural compactness. Moreover, the residual flexibility analysis revealed that the flexibility of three loops required for interaction with hACE2 has been reduced by the binding of these drugs. The post-simulation validation of these compounds such as binding free energy, in silico bioactivity, and dissociation constant prediction validated the anti-viral potency of these compounds. The total binding free energy (TBFE) for the SANC01032-RBD complex was reported to be -46.54 kcal/mol; for the SANC01032-RBD complex, the TBFE was -41.88 kcal/mol; for the SANC00992-RBD complex the TBFE was -29.05 kcal/mol, while for the SANC00317-RBD complex the TBFE was -31.03 kcal/mol. The results showed the inhibition potential of these compounds by targeting the RBD. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging Omicron variant of SARS-CoV-2.

2.
Medicina (Kaunas) ; 55(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269767

RESUMO

Background and Objectives: The aim of this study was to compare the effects of low-level laser therapy and continuous microwave diathermy on the growth of Gram-negative and Gram-positive bacteria and to establish their efficacy as an alternative therapeutic modality. MATERIALS AND METHODS: Laser fluence of 13 Joules (J)/cm2, 18 J/cm2 and 30 J/cm2 were used against several bacterial strains. Microwave dosages of 25, 50 and 100 watts (W) were used, respectively. RESULTS: A significant difference between the three groups was observed using repeated analysis of variance (RANOVA) (F value: 0.74, and p value: 0.001). The Greenhouse-Geisser correction (GG) revealed significant results for laser irradiation alone. However, effect size calculation showed effects with microwave diathermy as well as laser fluence. CONCLUSIONS: Low-level laser therapy appears to be an effective modality of treatment when compared with continuous microwave diathermy on the Gram-negative and the Gram-positive bacterial strains tested. Microwave diathermy revealed large and medium effects on the bacterial cell counts with dominant effects on Gram-negative strains.


Assuntos
Anti-Infecciosos/normas , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos da radiação , Terapia com Luz de Baixa Intensidade/normas , Análise de Variância , Anti-Infecciosos/efeitos da radiação , Anti-Infecciosos/uso terapêutico , Diatermia/métodos , Diatermia/normas , Humanos , Terapia com Luz de Baixa Intensidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA