Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 180: 114073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395550

RESUMO

We investigated the effects of fatty acid/ monoglyceride type and amount on the absorption of fat-soluble vitamins. Micelles or vesicles made with either caprylic acid (CA) + monocaprylin (MC) or oleic acid (OA) + monoolein (MO) at low or high concentrations were infused in bile duct-ligated mice. Retinol + retinyl ester and γ-tocopherol intestinal mucosa contents were higher in mice infused with CA + MC than with OA + MO (up to + 350 % for vitamin A and up to + 62 %, for vitamin E; p < 0.05). Cholecalciferol intestinal mucosa content was the highest in mice infused with micelles with CA + MC at 5 mg/mL (up to + 105 %, p < 0.05). Retinyl ester plasma response was higher with mixed assemblies formed at low concentration of FA + MG compared to high concentration (up to + 1212 %, p < 0.05), while no difference in cholecalciferol and γ-tocopherol plasma responses were measured. No correlation between size or zeta potential and vitamin absorption was found. The impact of FA and MG on fat-soluble vitamin absorption thus differs from one vitamin to another and should be considered to formulate adequate vitamin oral or enteral supplements.


Assuntos
Caprilatos , Ácidos Graxos , Glicerídeos , Monoglicerídeos , Camundongos , Animais , Ácidos Graxos/farmacologia , gama-Tocoferol , Ésteres de Retinil/farmacologia , Micelas , Absorção Intestinal , Vitaminas , Vitamina A/metabolismo , Colecalciferol , Ácido Oleico
2.
J Clin Lipidol ; 18(1): e105-e115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37989694

RESUMO

BACKGROUND: Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE: Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS: We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS: In vitro results showed a significant decrease in basolateral secretion of α- and ß-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION: Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.


Assuntos
Hipobetalipoproteinemias , Proteínas Monoméricas de Ligação ao GTP , Sindactilia , Humanos , Células CACO-2 , Zeaxantinas/metabolismo , Hipobetalipoproteinemias/genética , Carotenoides/metabolismo , Vitaminas , Lipídeos , Proteínas Monoméricas de Ligação ao GTP/genética
3.
Nutrients ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771214

RESUMO

Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (-57.0 ± 2.6% to -83.9 ± 1.6%) and cholesterol (-35.3 ± 4.4% to -60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (-41.5 ± 3.7% to -97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism.


Assuntos
Hipobetalipoproteinemias , Proteínas Monoméricas de Ligação ao GTP , Humanos , alfa-Tocoferol , Apolipoproteínas B/genética , Células CACO-2 , Enterócitos/metabolismo , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Vitamina E/farmacologia
4.
Food Chem ; 347: 128621, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33503576

RESUMO

In this study, we evaluated vitamin D and mineral (iron, zinc, magnesium) transfer to the bolus aqueous phase during the digestion of meals with/without pulses. We performed in vitro digestions using test meals made either of i) beef and/or semolina and/or chickpeas, or of ii) potatoes supplemented or not with fibers, phytates, tannins and saponins. Chickpea presence led to a decrease in vitamin D bioaccessibility (-56%, p ≤ 0.05) and mineral solubility (-28% for iron, p ≤ 0.05) compared with meals with beef and/or semolina only. This effect was largely compensated for vitamin D by the fact that this vitamin was more stable during digestion of meals based on plant foods only than of meals with beef. Tannins were the most deleterious compounds for iron solubility, while phytates and tannins decreased vitamin D bioaccessibility. Agronomical or technical solutions to selectively decrease the amount in pulses of compounds that affect micronutrient bioavailability should be further explored.


Assuntos
Digestão , Grão Comestível , Refeições , Carne , Minerais/química , Vitamina D/farmacocinética , Disponibilidade Biológica , Humanos , Solubilidade
5.
Mol Nutr Food Res ; 64(7): e1900911, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965714

RESUMO

SCOPE: The study aims to assess the role of factors assumed to be involved in the transfer of carotenoids from plant matrices to dietary emulsions in the upper digestive tract. METHODS AND RESULTS: Transfer is first measured as a function of time of pure ß-carotene (ßC), lutein (LUT), and lycopene (LYC) to triglyceride (TG) droplets dispersed in water. Then the transfer to TG droplets stabilized with either bovine serum albumin (BSA), phospholipids (PL), or both is measured. Finally, transfer of tomato and spinach puree carotenoids to these emulsions is measured. The maximal transfer efficiency of the pure carotenoids to uncoated emulsions is very efficient, ranging from 59% to 77%. However, it is dramatically impaired, ranging from 0.5% to 31% (p < 0.05), when emulsions are stabilized by the emulsifiers. Conversely, when LUT, and to a less extent ßC, but not LYC, is provided by the vegetable purees, its maximal transfer efficiency is significantly higher for the coated emulsions than for the uncoated one. CONCLUSIONS: Emulsifiers can dramatically impair the transfer of pure carotenoids to emulsion TG while they can facilitate the transfer of carotenoids from plant matrices. This suggests that specific interactions between plant matrix compounds and emulsifiers can enhance the transfer efficiency of carotenoids.


Assuntos
Carotenoides/química , Emulsões/química , Solanum lycopersicum/química , Spinacia oleracea/química , Triglicerídeos/química , Carotenoides/isolamento & purificação , Emulsificantes/química , Fosfolipídeos/química , Soroalbumina Bovina/química , Solubilidade , Óleo de Girassol
6.
Nutrients ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396478

RESUMO

(1) Background: vitamin E is often supplemented in the form of tocopherol acetate, but it has poor bioavailability and can fail to correct blood tocopherol concentrations in some patients with severe cholestasis. In this context, α-tocopheryl polyethylene glycol succinate 1000 (TPGS) has been of value, but very little is known about the mechanisms of its absorption. The aim of our work was to evaluate the mechanisms of absorption/secretion of TPGS compared to tocopherol acetate (TAC) and α-tocopherol by human enterocyte-like Caco-2 TC7 cells. (2) Methods: two weeks post-confluence Caco-2 cells were incubated with tocopherol- or TAC- or TPGS-rich mixed micelles up to 24 h and, following lipid extraction, TAC and tocopherol amounts were measured by high performance liquid chromatography (HPLC) in apical, cellular, and basolateral compartments. (3) Results: at equivalent concentrations of tocopherol in the apical side, the amounts of tocopherol secreted at the basolateral pole of Caco-2 cells are (i) significantly greater when the tocopherol is in the free form in the micelles; (ii) intermediate when it is in the TAC form in the micelles (p < 0.001); and (iii) significantly lower with the TPGS form (p < 0.0001). Interestingly, our results show, for the first time, that Caco-2 cells secrete one or more esterified forms of the vitamin contained in TPGS at the basolateral side.


Assuntos
Suplementos Nutricionais , Absorção Intestinal , Mucosa Intestinal/metabolismo , Vitamina E/farmacocinética , alfa-Tocoferol/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Humanos , Mucosa Intestinal/citologia , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA