Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 903, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231854

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) has improved capacity to visualize tumor and soft tissue involvement in head and neck cancers. Using advanced MRI, we can interrogate cell density using diffusion weighted imaging, a quantitative imaging that can be used during radiotherapy, when diffuse inflammatory reaction precludes PET imaging, and can assist with target delineation as well. Correlation of circulating tumor cells (CTCs) measurements with 3D quantitative tumor characterization could potentially allow selective, patient-specific response-adapted escalation or de-escalation of local therapy, and improve the therapeutic ratio, curing the greatest number of patients with the least toxicity. METHODS: The proposed study is designed as a prospective observational study and will collect pretreatment CT, MRI and PET/CT images, weekly serial MR imaging during RT and post treatment CT, MRI and PET/CT images. In addition, blood sample will be collected for biomarker analysis at those time intervals. CTC assessments will be performed on the CellSave tube using the FDA-approved CellSearch® Circulating Tumor Cell Kit (Janssen Diagnostics), and plasma from the EDTA blood samples will be collected, labeled with a de-identifying number, and stored at - 80 °C for future analyses. DISCUSSION: The primary objective of the study is to evaluate the prognostic value and correlation of weekly tumor response kinetics (gross tumor volume and MR signal changes) and circulating tumor cells of mucosal head and neck cancers during radiation therapy using MRI in predicting treatment response and clinical outcomes. This study will provide landmark information as to the utility of CTCs ('liquid biopsy) and tumor-specific functional quantitative imaging changes during treatment to guide personalization of treatment for future patients. Combining the biological information from CTCs and the structural information from MRI may provide more information than either modality alone. In addition, this study could potentially allow us to determine the optimal time to obtain MR imaging and/ or CTCs during radiotherapy to assess tumor response and provide guidance for patient selection and stratification for future dose escalation or de-escalation strategies. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03491176 ). Date of registration: 9th April 2018. (retrospectively registered). Date of enrolment of the first participant: 30th May 2017.


Assuntos
Protocolos Clínicos , Neoplasias de Cabeça e Pescoço/diagnóstico , Imageamento por Ressonância Magnética , Células Neoplásicas Circulantes/patologia , Biomarcadores , Feminino , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Biópsia Líquida , Imageamento por Ressonância Magnética/métodos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Prognóstico , Estudos Prospectivos , Resultado do Tratamento
2.
Cancer ; 116(11 Suppl): 2760-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20503408

RESUMO

BACKGROUND: Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer (LABC). Patients with IBC commonly present with skin metastasis, which are observed microscopically as tumor emboli within dermal lymphatics. These metastatic tumor cells aberrantly overexpress E-cadherin and exhibit the ability to undergo self-renewal and are highly invasive. There are no therapeutics yet identified that target the structure and functions of IBC tumor emboli. The present studies evaluated the effects of the pan-histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) using IBC tumor spheroids derived from established IBC cell lines and tumor spheroids derived from pleural effusion (PE) aspirates of patients with IBC and LABC, designated as PE-IBC and PE-LABC. METHODS: Methods used are as follows: culture of IBC cells from clonal density single cells in low adherence culture conditions that promote formation of IBC tumor spheroids; clonogenic assays; cell fractionation and Western blotting; confocal microscropy; and modified Boyden chamber invasion assays. RESULTS: SAHA inhibited self-renewal of IBC tumor spheroids from established IBC cell lines and PE-IBC and PE-LABC, as assessed by decreased clonogenic growth. SAHA blocked homotypic aggregation of the cells that comprised the IBC tumor spheroids leading to loss of their 3-dimensional (3D) structure, which was associated with a change in location of E-cadherin protein from the plasma membrane in untreated IBC tumor spheroids to the cytoplasm of cells within IBC tumor spheroids with SAHA treatment. In addition, SAHA blocked the robust invasion exhibited by IBC tumor spheroids of established cell lines as well as by tumor spheroids derived from PE-IBC and PE-LABC. CONCLUSIONS: SAHA targets the integrity and biological activities of IBC tumor spheroids and may be a promising agent to evaluate for its effectiveness in treatment of IBC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Esferoides Celulares , Neoplasias da Mama/metabolismo , Caderinas/análise , Agregação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/tratamento farmacológico , Invasividade Neoplásica/prevenção & controle , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA