Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Thorac Cancer ; 14(7): 645-653, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36655546

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a cancer-targeted treatment that uses a photosensitizer (PS) and laser irradiation. The effectiveness of current PDT using red light for advanced cancers is limited, because red light can only reach depths within a few millimeters. To enhance the antitumor effect for lung cancers, we developed a new phototherapy, intelligent targeted antibody phototherapy (iTAP). This treatment uses a combination of immunotoxin and a PS, mono-L-aspartyl chlorin e6 (NPe6). METHODS: We examined whether cetuximab encapsulated in endosomes was released into the cytosol by PS in PDT under light irradiation. A431 cells were treated with fluorescein isothiocyanate-labeled cetuximab, NPe6, and light irradiation and were observed with fluorescence microscopy. We analyzed the cytotoxicity of saporin-conjugated cetuximab (IT-cetuximab) in A431, A549, and MCF7 cells and the antitumor effect in model A549-bearing mice in vivo using the iTAP method. RESULTS: Fluorescent microscopy analysis showed that the photodynamic effect of NPe6 (20 µM) and light irradiation (37.6 J/cm2 ) caused the release of cetuximab from the endosome into the cytosol. In vitro analysis demonstrated that the iTAP method enhanced the cytotoxicity of IT-cetuximab by the photodynamic effect. In in vivo experiments, compared with IT-cetuximab alone or PDT alone, the iTAP method using a low dose of IT-cetuximab showed the greatest enhancement of the antitumor effect. CONCLUSIONS: Our study is the first report of the iTAP method using NPe6 for lung cancer cells. The iTAP method may become a new, minimally invasive treatment superior to current PDT methods.


Assuntos
Imunotoxinas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Fototerapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
2.
Chem Pharm Bull (Tokyo) ; 67(3): 199-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827999

RESUMO

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily and include three subtypes (PPARα, PPARδ, and PPARγ). They regulate gene expression in a ligand-dependent manner. PPARα plays an important role in lipid metabolism. PPARγ is involved in glucose metabolism and is a potential therapeutic target in Type 2 diabetes. PPARδ ligands are candidates for the treatment of metabolic disorders. Thus, the detection of PPAR ligands may facilitate the treatment of various diseases. In this study, to identify PPAR ligands, we engineered reporter cell lines that can be used to quantify PPARγ and PPARδ activity. We evaluated several known ligands using these reporter cell lines and confirmed that they are useful for PPAR ligand detection. Furthermore, we evaluated extracts of approximately 200 natural resources and found various extracts that enhance reporter gene activity. Finally, we identified a main alkaloid of the Evodia fruit, evodiamine, as a PPARγ activator using this screening tool. These results suggest that the established reporter cell lines may serve as a useful cell-based screening tool for finding PPAR ligands to ameliorate metabolic syndromes.


Assuntos
Síndrome Metabólica/prevenção & controle , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Linhagem Celular , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Síndrome Metabólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Extratos Vegetais/farmacologia
3.
J Biol Chem ; 293(26): 10333-10343, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764933

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.


Assuntos
Regulação da Expressão Gênica , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Humanos , Hipolipemiantes/farmacologia , Ligantes , Ratos
4.
Acta Neuropathol Commun ; 3: 82, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637322

RESUMO

INTRODUCTION: Neuromyelitis optica (NMO), an autoimmune astrocytopathic disease associated with anti-aquaporin-4 (AQP4) antibody, is characterized by extensive necrotic lesions preferentially involving the optic nerves and spinal cord. However, previous in-vivo experimental models injecting human anti-AQP4 antibodies only resulted in mild spinal cord lesions compared to NMO autopsied cases. Here, we investigated whether the formation of severe NMO-like lesions occurs in Lewis rats in the context of experimental autoimmune encephalomyelitis (EAE), intraperitoneally injecting incremental doses of purified human immunoglobulin-G from a NMO patient (hIgGNMO) or a high affinity anti-AQP4 monoclonal antibody (E5415A), recognizing extracellular domain of AQP4 made by baculovirus display method. RESULTS: NMO-like lesions were observed in the spinal cord, brainstem, and optic chiasm of EAE-rats with injection of pathogenic IgG (hIgGNMO and E5415A), but not in control EAE. Only in higher dose E5415A rats, there were acute and significantly severer clinical exacerbations (tetraparesis or moribund) compared with controls, within half day after the injection of pathogenic IgG. Loss of AQP4 was observed both in EAE rats receiving hIgGNMO and E5415A in a dose dependent manner, but the ratio of AQP4 loss in spinal sections became significantly larger in those receiving high dose E5415A up to about 50 % than those receiving low-dose E5415A or hIgGNMO less than 3 %. These lesions were also characterized by extensive loss of glial fibrillary acidic protein but relatively preserved myelin sheaths with perivascular deposition of IgG and C5b-9, which is compatible with post mortem NMO pathology. In high dose E5415A rats, massive neutrophil infiltration was observed especially at the lesion edge, and such lesions were highly vacuolated with partial demyelination and axonal damage. In contrast, such changes were absent in EAE rats receiving low-dose E5415A and hIgGNMO. CONCLUSIONS: In the present study, we established a severe experimental NMO rat model with highly clinical exacerbation and extensive tissue destructive lesions typically observed in NMO patients, which has not adequately been realized in in-vivo rodent models. Our data suggest that the pathogenic antibodies could induce immune mediated astrocytopathy with mobilized neutrophils, resulted in early lesion expansion of NMO lesion with vacuolation and other tissue damages. (350/350).


Assuntos
Aquaporina 4/imunologia , Astrócitos/patologia , Imunoglobulina G/efeitos adversos , Neuromielite Óptica/induzido quimicamente , Neuromielite Óptica/patologia , Idoso , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Complemento C9/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Vacúolos/patologia
5.
J Cell Mol Med ; 11(3): 383-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17635634

RESUMO

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and the most prevalent form of dementia worldwide. AD is characterized pathologically by amyloid-? plaques, neurofibrillary tangles and neuronal loss, and clinically by a progressive loss of cognitive abilities. At present, the fundamental molecular mechanisms underlying the disease are unclear and no treatment for AD is known. Epidemiological evidence continues to mount linking vascular diseases, such as hypertension and diabetes, and hypercholesterolaemia with an increased risk for developing AD. A growing amount of evidence suggests a mechanistic link between cholesterol metabolism in the brain and the formation of amyloid plaques in AD development. Cholesterol and statins clearly modulate ?-amyloid precursor protein (?APP) processing in cell culture and animal models. Statins not only reduce endogenous cholesterol synthesis but also exert other various pleiotrophic effects, such as the reduction in protein isoprenylation. Through these effects statins modulate a variety of cellular functions involving both cholesterol (and membrane rafts) and isoprenylation. Although clearly other factors, such as vascular inflammation, oxidative stress and genetic factors, are intimately linked with the progression of AD, this review focuses on the present research findings describing the effect of cholesterol, membrane rafts and isoprenylation in regulating ?APP processing and in particular ?-secretase complex assembly and function and AD progression, along with consideration for the potential role statins may play in modulating these events.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticolesterolemiantes/uso terapêutico , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Terpenos/metabolismo , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA