Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26914, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434421

RESUMO

Background: Previous studies have shown that the traditional Chinese medicine (TCM) called "compound healthy ear agent" (CHEA) had anti-apoptosis effects in cochlear hair cells and spiral ganglion neurons, and could protect mice hearing against presbycusis or age-related hearing loss (AHL), as well as aminoglycoside antibiotic-induced ototoxicity. Because its mechanisms of action are still unclear, we investigated the mechanism of action of CHEA against AHL in mice using proteomics techniques. Methods: Eighteen C57BL/6J mice at 1 month of age were randomly divided into three groups: (A) drinking water until 2 months of age, K2M); (B) drinking water until 7 months of age to induce AHL, K7M; (C) drinking water containing CHEA daily until 7 months of age as treatment group, Z7M. At 2 or 7 months mice were sacrificed and their cochleae were removed for proteomics analysis. Results: The numbers of proteins with a false discovery rate (FDR) < 1% were respectively 5873 for qualitative and 5492 for quantitative statistics. The numbers of proteins with differential enrichment at least 1.5-fold (p < 0.05) were respectively 351 for K7M vs K2M groups, 52 for Z7M vs K7M groups, 264 for Z7M vs K2M groups. The differentially expressed proteins in the Z7M group were involved in synaptic molecular transmission, energy metabolism, immune response, antioxidant defenses, and anti-apoptosis. Conclusion: The TCM CHEA played a protective role against AHL in mice by regulating the expression of specific proteins and genes in cochlear hair cells and spiral ganglion neurons. Besides the pathways expected to be involved (antioxidant and anti-apoptosis), proteins related to immune response is a new finding of the present study.

2.
Lasers Med Sci ; 39(1): 86, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438583

RESUMO

In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Diabetes Mellitus Experimental/genética , Cicatrização/genética , Quimiocina CXCL12/genética , Fator 2 de Crescimento de Fibroblastos , Células-Tronco
3.
CNS Neurosci Ther ; 30(2): e14574, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421088

RESUMO

RATIONALE: Numerous epidemiological studies have reported a link between low testosterone levels and an increased risk of cerebrovascular disease in men. However, there is ongoing controversy surrounding testosterone replacement therapy due to potential side effects. PBMT has been demonstrated to improve cerebrovascular function and promote testosterone synthesis in peripheral tissues. Despite this, the molecular mechanisms that could connect PBMT with testosterone and vascular function in the brain of photothrombosis (PT)-induced stroke rats remain largely unknown. METHODS: We measured behavioral performance, cerebral blood flow (CBF), vascular permeability, and the expression of vascular-associated and apoptotic proteins in PT-induced stroke rats treated with flutamide and seven consecutive days of PBM treatment (350 mW, 808 nM, 2 min/day). To gain further insights into the mechanism of PBM on testosterone synthesis, we used testosterone synthesis inhibitors to study their effects on bEND.3 cells. RESULTS: We showed that PT stroke caused a decrease in cerebrovascular testosterone concentration, which was significantly increased by 7-day PBMT (808 nm, 350 mW/cm2 , 42 J/cm2 ). Furthermore, PBMT significantly increased cerebral blood flow (CBF) and the expression of vascular-associated proteins, while inhibiting vascular permeability and reducing endothelial cell apoptosis. This ultimately mitigated behavioral deficits in PT stroke rats. Notably, treatment with the androgen receptor antagonist flutamide reversed the beneficial effects of PBMT. Cellular experiments confirmed that PBMT inhibited cell apoptosis and increased vascular-associated protein expression in brain endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD). However, these effects were inhibited by flutamide. Moreover, mechanistic studies revealed that PBMT-induced testosterone synthesis in bEnd.3 cells was partly mediated by 17ß-hydroxysteroid dehydrogenase 5 (17ß-HSD5). CONCLUSIONS: Our study provides evidence that PBMT attenuates cerebrovascular injury and behavioral deficits associated with testosterone/AR following ischemic stroke. Our findings suggest that PBMT may be a promising alternative approach for managing cerebrovascular diseases.


Assuntos
Terapia com Luz de Baixa Intensidade , Acidente Vascular Cerebral , Humanos , Masculino , Ratos , Camundongos , Animais , Testosterona/metabolismo , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Células Endoteliais/metabolismo , Flutamida/farmacologia , Flutamida/uso terapêutico , Flutamida/metabolismo , Acidente Vascular Cerebral/terapia
4.
Curr Microbiol ; 80(12): 374, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847302

RESUMO

Microbial phytases are enzymes that break down phytic acid, an anti-nutritional compound found in plant-based foods. These enzymes which are derived from bacteria and fungi have diverse properties and can function under different pH and temperature conditions. Their ability to convert phytic acid into inositol and inorganic phosphate makes them valuable in food processing. The application of microbial phytases in the food industry has several advantages. Firstly, adding them to animal feedstuff improves phosphorus availability, leading to improved nutrient utilization and growth in animals. This also reduces environmental pollution by phosphorus from animal waste. Secondly, microbial phytases enhance mineral bioavailability and nutrient assimilation in plant-based food products, counteracting the negative effects of phytic acid on human health. They can also improve the taste and functional properties of food and release bioactive compounds that have beneficial health effects. To effectively use microbial phytases in the food industry, factors like enzyme production, purification, and immobilization techniques are important. Genetic engineering and protein engineering have enabled the development of phytases with improved properties such as enhanced stability, substrate specificity, and resistance to degradation. This review provides an overview of the properties and function of phytases, the microbial strains that produce them, and their industrial applications, focusing on new approaches.


Assuntos
6-Fitase , Animais , Humanos , 6-Fitase/genética , Ácido Fítico , Fungos/genética , Fungos/metabolismo , Indústria Alimentícia , Fósforo
5.
Ann Neurosci ; 30(2): 133-142, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37706102

RESUMO

Background: The relationship between the quality of the learning environment and student outcomes is receiving more serious attention from educational psychologists, neurologists, ophthalmologists, orthopedists, surgeons, oncologists, architects, ergonomists, nutritionists, and Michelin star chefs. There is a role for ergonomic office and school design to positively impact worker and student productivity, and one design attribute drawing attention is the indoor lit environment. In this review, we expand upon the role that light plays in education, as it has enabled millions of pupils to read at late hours, which were previously too dark. However, still unappreciated is the biological effects of artificial light on circadian rhythm and its subsequent impacts on health and learning outcomes. Summary: This review describes the current state of light in the educational environment, its impact, and the effect of certain inexpensive and easy-to-implement adaptations to better support student growth, learning and development. We find that the current lighting environment for pupils is sub-optima based on biological mechanism and may be improved through cost effective interventions. These interventions can achieve greater biological harmonization and improve learner outcomes. Key Message: The impact of the lighting environment in educational institutions on pupil biology has received minimal attention thus far. The current lighting environment in schools is not conducive to student health and educational performance. Cost-effective approaches can have an outsized impact on student health and educational attainment. We strongly recommend educational institutions take the lit environment into account when designing educational programs.

6.
J Lasers Med Sci ; 14: e18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583498

RESUMO

Introduction: Here, we assess the therapeutic effects of photobiomodulation (PBM) and curcumin (CUR)-loaded superparamagnetic iron oxide nanoparticles (SPIONs), alone or together, on the maturation step of a type 1 diabetes (DM1) rat wound model. Methods: Full-thickness wounds were inflicted in 36 rats with diabetes mellitus (DM) induced by the administration of streptozotocin (STZ). The rats were randomly allocated to four groups. Group one was untreated (control); group two received CUR; group 3 received PBM (890 nm, 80 Hz, 0.2 J/cm2); group 4 received a combination of PBM plus CUR. On days 0, 4, 7, and 15, we measured microbial flora, wound closure fraction, tensile strength, and stereological analysis. Results: All treatment groups showed a substantial escalation in the wound closure rate, a substantial reduction in the count of methicillin-resistant Staphylococcus aureus (MRSA), a substantial improvement in wound strength, a substantially improvement in stereological parameters compared to the control group, however, the PBM+CUR group was superior to the other treatment groups (all, P≤0.05). Conclusion: All treatment groups showed significantly improved wound healing in the DM1 rat model. However, the PBM+CUR group was superior to the other treatment groups and the control group in terms of wound strength and stereological parameters.

7.
J Biophotonics ; 16(10): e202300083, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37171054

RESUMO

Photobiomodulation therapy (PBMt) combined or not with oral hypoglycemic medication has not been investigated in type 2 diabetes (T2DM) patients. All 10 T2DM patients were assessed randomly at 6 different occasions (3 with and 3 without regular oral hypoglycemic medication). Capillary glycemia was assessed after overnight fast (pre-prandial), 1 h postprandially (standardized meal, 338 kcal), and 30 min, 3 h, 6 h, 12 h post-PBMt (830 nm; 25 arrays of LEDs, 80 mW/array). Three doses (0 J-sham, 100 J, 240 J per site) were applied bilaterally on quadriceps femoris muscles, hamstrings, triceps surae, ventral upper arm and forearm; and randomly combined or not with oral hypoglicemic medication, totaling six different therapies applied for all 10 TDM2 patients (PBMt sham, PBMt 100 J, PBMt 240 J, PBMt sham + medication, PBMt 100 J + medication, PBMt 240 J + medication). Cardiac autonomic control was assessed by heart rate variability (HRV) indices. Without medication, there was reduction in glycemia after all PBMt doses, with 100 J as the best dose that persisted until 12 h and presented lower area under the curve (AUC). With medication, glycemia decreased similarly among doses. No differences between 100 J and sham + medication, but AUC was significantly lower after 100 J, suggesting better glycemic control. Low frequency component of HRV increased after sham + medication and 100 J, suggesting higher sympathetic activation. PBMt showed time- and dose-response effect to reduce glycemia in T2DM patients. Effects on HRV were consistent with glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Terapia com Luz de Baixa Intensidade , Humanos , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/radioterapia , Controle Glicêmico , Músculo Esquelético
9.
Lasers Med Sci ; 38(1): 129, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243832

RESUMO

Diabetic wounds are categorized by chronic inflammation, leading to the development of diabetic foot ulcers, which cause amputation and death. Herewith, we examined the effect of photobiomodulation (PBM) plus allogeneic diabetic adipose tissue-derived stem cells (ad-ADS) on stereological parameters and expression levels of interleukin (IL)-1ß and microRNA (miRNA)-146a in the inflammatory (day 4) and proliferation (day 8) stages of wound healing in an ischemic infected (with 2×107 colony-forming units of methicillin-resistant Staphylococcus aureus) delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. There were five groups of rats: group 1 control (C); group 2 (CELL) in which rat wounds received 1×106 ad-ADS; group 3 (CL) in which rat wounds received the ad-ADS and were subsequently exposed to PBM(890 nm, 80 Hz, 3.5 J/cm2, in vivo); group 4 (CP) in which the ad-ADS preconditioned by the PBM(630 nm + 810 nm, 0.05 W, 1.2 J/cm2, 3 times) were implanted into rat wounds; group 5 (CLP) in which the PBM preconditioned ad-ADS were implanted into rat wounds, which were then exposed to PBM. On both days, significantly better histological results were seen in all experimental groups except control. Significantly better histological results were observed in the ad-ADS plus PBM treatment correlated to the ad-ADS alone group (p<0.05). Overall, PBM preconditioned ad-ADS followed by PBM of the wound showed the most significant improvement in histological measures correlated to the other experimental groups (p<0.05). On days 4 and 8, IL-1 ß levels of all experimental groups were lower than the control group; however, on day 8, only the CLP group was different (p<0.01). On day 4, miR-146a expression levels were substantially greater in the CLP and CELL groups correlated to the other groups, on day 8 miR-146a in all treatment groups was upper than C (p<0.01). ad-ADS plus PBM, ad-ADS, and PBM all improved the inflammatory phase of wound healing in an IIDHWM in TIDM1 rats by reducing inflammatory cells (neutrophils, macrophages) and IL-1ß, and increasing miRNA-146a. The ad-ADS+PBM combination was better than either ad-ADS or PBM alone, because of the higher proliferative and anti-inflammatory effects of the PBM+ad-ADS regimen.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , MicroRNAs , Ratos , Animais , Diabetes Mellitus Experimental/patologia , Ratos Wistar , Cicatrização , Células-Tronco/patologia , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , MicroRNAs/genética
11.
Lasers Med Sci ; 38(1): 93, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964849

RESUMO

Intravascular laser irradiation of blood (ILIB) was developed to treat cardiovascular diseases due to its rheological effects. In its original form, ILIB was applied by an intravenous optical fiber, restricting its application. However, this technique was modified to non-invasive irradiation through the radial artery, now called vascular photobiomodulation (VPBM). Many studies have used both, ILIB and VPBM, to treat lung diseases. It is well established that lung diseases affect more than 300 million people worldwide with high morbidity and mortality rates. In this short critical review, we discuss the potential benefits of photobiomodulation to treat lung diseases using these two approaches. The search was performed in the electronic database of MEDLINE (Medical Literature Analysis and Retrieval System Online) via PubMed. The data search was carried out from 1991 to 2017. We selected a total of 10 clinical studies using either ILIB or VPBM, in addition to 2 experimental studies in animals. The respiratory diseases treated in these studies included bronchitis, asthma, pneumonia, and tuberculosis. The results showed overall beneficial effects on lung diseases, characterized by a reduction in the inflammatory cascade and antioxidant effects, improvement of hemodynamic parameters, the efficiency of gas exchange, and reduction of hospitalization periods. In conclusion, all studies showed promising effects of ILIB in both animal and human studies. The studies did not discuss any disadvantages or contraindications. However, further studies are needed in order to understand the dosimetry, and the literature is lacking in randomized, controlled clinical trials. Thus, this review highlights the need for additional studies using this approach.


Assuntos
Asma , Doenças Cardiovasculares , Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Hemodinâmica , Lasers
12.
Lett Appl Microbiol ; 76(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36990686

RESUMO

The antibacterial effects of a polychromatic light device designed for intravenous application were assessed in vitro. Staphylococcus aureus, Klebsiella pneumoniae, or Escherichia coli were exposed to a 60-min sequential light cycle comprising 365, 530, and 630 nm wavelengths in circulated sheep blood. Bacteria were quantified by viable counting. The potential involvement of reactive oxygen species in the antibacterial effect was assessed using the antioxidant N-acetylcysteine-amide. A modified device was then used to determine the effects of the individual wavelengths. Exposure of blood to the standard wavelength sequence caused small (c. 0.5 Log 10 CFU) but statistically significant reductions in viable counts for all three bacteria, which were prevented by the addition of N-acetylcysteine-amide. Bacterial inactivation did not occur in blood-free medium, but supplementation with haem restored the moderate bactericidal effect. In single-wavelength experiments, bacterial inactivation occurred only with red (630 nm) light. Concentrations of reactive oxygen species were significantly higher under light stimulation than in unstimulated controls. In summary, exposure of bacteria within blood to a cycle of visible light wavelengths resulted in small but statistically significant bacterial inactivation apparently mediated by a 630 nm wavelength only, via reactive oxygen species possibly generated by excitation of haem groups.


Assuntos
Acetilcisteína , Luz , Animais , Ovinos , Espécies Reativas de Oxigênio , Acetilcisteína/farmacologia , Escherichia coli , Bactérias , Antibacterianos/farmacologia , Amidas/farmacologia
14.
J Mater Sci Mater Med ; 34(2): 9, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809518

RESUMO

Since the CNS is unable to repair itself via neuronal regeneration in adult mammals, alternative therapies need to be found. The use of cerium oxide nanoparticles to repair nerve damage could be a promising approach for spinal cord reconstruction. In this study, we constructed a scaffold containing cerium oxide nanoparticles (Scaffold-CeO2) and investigated the rate of nerve cell regeneration in a rat model of spinal cord injury. The scaffold of gelatin and polycaprolactone was synthesized, and a gelatin solution containing cerium oxide nanoparticles was attached to the scaffold. For the animal study, 40 male Wistar rats were randomly divided into 4 groups (n = 10): (a) Control; (b) Spinal cord injury (SCI); (c) Scaffold (SCI + scaffold without CeO2 nanoparticles); (d) Scaffold-CeO2 (SCI + scaffold containing CeO2 nanoparticles). After creation of a hemisection SCI, scaffolds were placed at the site of injury in groups c and d, and after 7 weeks the rats were subjected to behavioral tests and then sacrificed for preparation of the spinal cord tissue to measure the expression of G-CSF, Tau and Mag proteins by Western blotting and Iba-1 protein by immunohistochemistry. The result of behavioral tests confirmed motor improvement and pain reduction in the Scaffold-CeO2 group compared to the SCI group. Decreased expression of Iba-1 and higher expression of Tau and Mag in the Scaffold-CeO2 group compared to the SCI group could be the result of nerve regeneration caused by the scaffold containing CeONPs as well as relief of pain symptoms.


Assuntos
Nanofibras , Nanopartículas , Traumatismos da Medula Espinal , Ratos , Animais , Masculino , Ratos Wistar , Gelatina , Traumatismos da Medula Espinal/terapia , Neurônios , Medula Espinal , Regeneração Nervosa , Alicerces Teciduais , Mamíferos
17.
Nutr Neurosci ; 26(6): 560-571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35507337

RESUMO

INTRODUCTION: In this paper, we conducted a meta-analysis on the curcumin effect on functional recovery provided by the Basso, Beattie, Brenham (BBB) test for rats, and the Basso mouse scale (BMS) for mice after spinal cord injury (SCI) in animal models. METHOD: Data mining was performed, and the standard mean difference (SMD) between the treated and control (untreated) groups was calculated using the STATA software. Quality control and subgroup analysis were performed. RESULTS: The analysis includes 24 experimental studies that showed curcumin had a strong significance in improving functional recovery after SCI (SMD = 3.38; 95% CI: 2.54-4.22; p < 0.001). When curcumin was administered daily, it had a stronger effect than single-dose treatment or weekly administration. Despite the same effect in the follow-up time before and after 4 weeks post-injury, but later 9 weeks, curcumin had only a moderate effect. Curcumin also significantly reduced the expression of GFAP (Glial fibrillary acidic protein) marker compared to untreated groups. CONCLUSION: These findings suggest that daily administration of curcumin can be an effective approach to improving functional recovery after SCI.


Assuntos
Curcumina , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Curcumina/uso terapêutico , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Medula Espinal/metabolismo
18.
Crit Rev Food Sci Nutr ; 63(22): 5488-5505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34978223

RESUMO

Although conventional drugs are widely used in the prevention and treatment of cardiovascular disease (CVD), they are being used less frequently due to concerns about possible side effects over the long term. There has been a renewed research interest in medicinal plant products, and their role in protecting the cardiovascular system and treating CVD, which are now being considered as potential alternatives to modern drugs. The most important mechanism causing damage to the myocardium after heart attack and reperfusion, is increased levels of free radicals and oxidative stress. Therefore, treatment approaches often focus on reducing free radicals or enhancing antioxidant defense mechanism. It has been previously reported that bioactive natural products can protect the heart muscle in myocardial infarction (MI). Since these compounds are readily available in fruits and vegetables, they could prevent the risk of MI if they are consumed daily. Although the benefits of a healthy diet are well known, many scientific studies have focused on whether pure natural compounds can prevent and treat MI. In this review we summarize the effects of curcumin, resveratrol, quercitin, berberine, and tanshinone on MI and CVD, and focus on their proposed molecular mechanisms of action.


Assuntos
Produtos Biológicos , Infarto do Miocárdio , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Radicais Livres/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA