Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Pharmacol ; 15: 1288584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500762

RESUMO

Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.

2.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764502

RESUMO

Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Neuroblastoma , Fármacos Neuroprotetores , Polygonum , Humanos , Peróxido de Hidrogênio/toxicidade , Neuroblastoma/tratamento farmacológico , Acetilcolinesterase , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Espectrometria de Massas em Tandem , Anticorpos , Etanol
3.
Food Chem ; 404(Pt B): 134628, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283313

RESUMO

Tea is one of the world's most popular beverages, with several health benefits. Polyphenols are the predominant constituents to account for its health benefits. Despite the well-known benefits of tea on health, the uniqueness of its aroma, taste, and features is an added value that contribute to the increased popularity of this beverage worldwide, and they are associated with the alterations in the metabolites during tea processing and cultivation. The manufacturing of tea consists of several stages with various processes as withering, fixing, rolling, fermentation and drying. The classification into tea types is according to such processing. The high-quality production of the various tea classes also depends on agricultural conditions, such as shading, plucking, climate, and soil composition. Metabolomics is well recognized as an effective tool for evaluating the quality of tea products. Applications in controlling the quality of tea products and adulterant detection are discussed in this review.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Metabolômica , Polifenóis/análise , Controle de Qualidade , Chá/metabolismo , Folhas de Planta/química
4.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144493

RESUMO

Moringa oleifera is an ancient remedy plant, known as the miraculous plant due to its many prominent uses and significant health benefits. It is a nutrient-rich plant, with exceptional bioactive compounds, such as polyphenols that possess several medicinal properties. Many significant studies have been carried out to evaluate the ethnomedicinal and pharmacological properties of M. oleifera in various applications. Therefore, this comprehensive review compiles and summarizes important findings from recent studies on the potential properties of different parts of M. oleifera. The pharmacological properties of M. oleifera have been studied for various potential biological properties, such as cardio-protective, anti-oxidative, antiviral, antibacterial, anti-diabetic and anti-carcinogenic effects. Therefore, the potential of this plant is even more anticipated. This review also highlights the safety and toxicity effects of M. oleifera treatment at various doses, including in vitro, in vivo and clinical trials from human studies.


Assuntos
Anticarcinógenos , Moringa oleifera , Antibacterianos/uso terapêutico , Antivirais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta
5.
Molecules ; 27(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956966

RESUMO

Fruits maintain the image as the richest sources of vitamins. Focusing on apricots, utilization of apricot species for many applications is possible due to its various benefits. Many research studies demonstrated different perspectives of apricot, especially in medical used as it can act as antioxidant, anti-inflammatory, and antimicrobial agents. Moreover, in the industrial sectors, apricots can be used in the production of biofuels and batteries. All components of the apricot fruit, including seeds and kernels have been found to possess significant interest. This review is to breach the knowledge gap regarding the key nutrients and chemicals of apricot fruit, contributing to its health-promoting properties to emphasize the noble importance of this fruit in the diet and in the management of several diseases. We also cover the application of apricots in the industry that could be developed as a promising and sustainable source.


Assuntos
Prunus armeniaca , Antioxidantes/análise , Antioxidantes/farmacologia , Frutas/química , Prunus armeniaca/química , Sementes/química , Vitaminas/análise
6.
Life (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013466

RESUMO

Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants' active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022.

7.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744798

RESUMO

Phillyrin is an effective lignan glycoside extracted from a traditional Chinese medicine Forsythia suspensa (Thunb.) Vahl (Oleaceae). It mainly exists in the roots, stems, leaves and fruits of the plant, with the highest content in the leaves. In terms of its medicinal application, there are a large number of experimental data proving its pharmacological effects in vitro and in animal models, such as anti-inflammatory, anti-obesity, anti-tumor, etc. Furthermore, pharmacokinetic experiments have also shown phillyrin's high effectiveness and low toxicity. Despite more than one thousand studies in the literature on phillyrin retrievable from Web of Science, PubMed, and CNKI, few reviews on its pharmacological activities have been presented conclusively. In this paper, we aimed to summarize the pharmacological and pharmacokinetic characteristics of phillyrin from the current literature, focusing on its anti-inflammatory, anti-aging, antiviral, antibacterial, hepatoprotective and anti-cancer effects, hoping to come up with new insights for its application as well as future studies.


Assuntos
Forsythia , Animais , Anti-Inflamatórios/farmacologia , Glucosídeos/farmacologia , Glicosídeos , Extratos Vegetais/farmacologia
8.
J Alzheimers Dis ; 72(1): 229-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31594216

RESUMO

Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AßPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AßPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AßPP/PS1 mice that received TRF supplementation.


Assuntos
Corpo Estriado/metabolismo , Hipocampo/metabolismo , Óleo de Palmeira/farmacologia , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Tocotrienóis/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Proteoma/genética , Proteômica/métodos
9.
J Alzheimers Dis ; 64(1): 249-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889072

RESUMO

We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AßPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aß interaction or independent of Aß interaction.


Assuntos
Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Transtornos Mentais/tratamento farmacológico , Redes e Vias Metabólicas/efeitos dos fármacos , Óleo de Palmeira/química , Tocotrienóis/uso terapêutico , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos Mentais/etiologia , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Estatísticas não Paramétricas , Fatores de Tempo
10.
J Alzheimers Dis ; 55(2): 597-612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27716672

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-ß (Aß) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aß aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aß fibrils and Aß oligomers in vitro. Moreover, daily TRF supplementation to AßPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aß immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AßPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.


Assuntos
Doença de Alzheimer/complicações , Antioxidantes/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Tocotrienóis/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética
11.
Oxid Med Cell Longev ; 2017: 6019796, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29348790

RESUMO

Accumulating evidence suggests that altered arginine metabolism is involved in the aging and neurodegenerative processes. This study sought to determine the effects of age and vitamin E supplementation in the form of tocotrienol-rich fraction (TRF) on brain arginine metabolism. Male Wistar rats at ages of 3 and 21 months were supplemented with TRF orally for 3 months prior to the dissection of tissue from five brain regions. The tissue concentrations of L-arginine and its nine downstream metabolites were quantified using high-performance liquid chromatography and liquid chromatography tandem mass spectrometry. We found age-related alterations in L-arginine metabolites in the chemical- and region-specific manners. Moreover, TRF supplementation reversed age-associated changes in arginine metabolites in the entorhinal cortex and cerebellum. Multiple regression analysis revealed a number of significant neurochemical-behavioral correlations, indicating the beneficial effects of TRF supplementation on memory and motor function.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/metabolismo , Arginina/metabolismo , Encéfalo/metabolismo , Suplementos Nutricionais , Poliaminas/metabolismo , Tocotrienóis/farmacologia , Animais , Antioxidantes/farmacologia , Arginina/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA