Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 14(3)2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-27005636

RESUMO

We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.


Assuntos
Diatomáceas/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Escuridão , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácido Eicosapentaenoico/isolamento & purificação , Glucose/química , Processos Heterotróficos , Luz , Engenharia Metabólica/métodos
2.
PLoS One ; 10(12): e0144054, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658738

RESUMO

The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 µg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 µmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.


Assuntos
Vias Biossintéticas/genética , Diatomáceas/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Engenharia Metabólica , Reatores Biológicos , Biotecnologia/métodos , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácido Eicosapentaenoico/isolamento & purificação , Humanos , Luz , Metabolismo dos Lipídeos/genética , Organismos Geneticamente Modificados , Fotoperíodo , Sais/metabolismo , Sais/farmacologia , Água do Mar/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA