Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Physiol Plant ; 176(2): e14247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499953

RESUMO

Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.


Assuntos
Brassica napus , Fósforo , Brassica napus/genética , Fosfatase Ácida/genética , Fenótipo , Genótipo , Solo
2.
Am J Hosp Palliat Care ; 40(2): 129-135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35531986

RESUMO

Palliative care clinicians regularly care for patients with serious illnesses, many of whom are engaging in the use of complementary and alternative medicine (CAM) either alone or along with conventional medical therapies. A subset of these patients may be engaging in therapies that have little or no evidence for efficacy and carry significant potential risks to their health. These therapies, however, may carry a great deal of significance for the patient and family for whom conventional medicine has failed or is otherwise deemed untenable. Dismissing such therapies as "quackery" risks alienating patients and damaging or even severing a therapeutic relationship. When faced with patients who are engaging in potentially unsafe low-evidence therapies (PULETs), clinicians themselves may experience a great deal of moral distress when deciding how to balance supporting the hope PULETs may represent with the principles of nonmaleficence and autonomy. In this article, we will review the definition of PULETs and distinguish them from most CAM therapies. Drawing upon existing writings in the CAM literature, we will then review a framework to evaluate the relative risk/benefit ratio of such therapies followed by a review of the ethical and legal aspects of care. Finally, utilizing existing principles and tools in emotion-based communication, we present a communication approach to foster continued collaboration and care for patients who engage in PULETs.


Assuntos
Terapias Complementares , Enfermagem de Cuidados Paliativos na Terminalidade da Vida , Humanos , Terapias Mente-Corpo , Cuidados Paliativos , Comunicação
3.
Plant J ; 111(6): 1753-1767, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883193

RESUMO

Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.


Assuntos
Populus , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Exp Bot ; 73(14): 4753-4777, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35511123

RESUMO

Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.


Assuntos
Brassica napus , Ácido Abscísico/metabolismo , Aclimatação , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Environ Microbiol ; 24(4): 1902-1917, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229442

RESUMO

Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2-aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant-growth-promoting rhizobacterium Pseudomonas putida BIRD-1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR-type regulator, termed AepR, upstream of the 2AEP transaminase-phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate-specific regulators in phosphonate metabolism.


Assuntos
Organofosfonatos , Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
6.
Ann Bot ; 128(7): 919-930, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34490877

RESUMO

BACKGROUND AND AIMS: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS: An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS: A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION: Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Fósforo , Melhoramento Vegetal
7.
Nat Commun ; 12(1): 4554, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315891

RESUMO

The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.


Assuntos
Ácido Aminoetilfosfônico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Minerais/metabolismo , Fósforo/metabolismo , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Cinética , Oceanos e Mares , Oxirredução , Filogenia , Proteômica , Pseudomonas putida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhodobacteraceae/genética
8.
ISME J ; 15(4): 1040-1055, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257812

RESUMO

Bacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA. For the first time, we also reveal a subset of Bacteroidetes outer membrane SusCD-like complexes, typically associated with carbon acquisition, and several TonB-dependent transporters, are induced during Pi-depletion. Furthermore, in response to phosphate depletion, the plant-associated Flavobacterium used in this study expressed many previously characterised and novel proteins targeting organic phosphorus. Collectively, these enzymes exhibited superior phosphatase activity compared to plant-associated Pseudomonas spp. Importantly, several of the novel low-Pi-inducible phosphatases and transporters, belong to the Bacteroidetes auxiliary genome and are an adaptive genomic signature of plant-associated strains. In conclusion, niche adaptation to the plant microbiome thus appears to have resulted in the acquisition of unique phosphorus scavenging loci in Bacteroidetes, enhancing their phosphorus acquisition capabilities. These traits may enable their success in the rhizosphere and also present exciting avenues to develop sustainable agriculture.


Assuntos
Microbiota , Fósforo , Bacteroidetes/genética , Raízes de Plantas , Plantas , Rizosfera
9.
Ann Bot ; 126(1): 119-140, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32221530

RESUMO

BACKGROUND AND AIMS: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS: Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS: The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS: The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.


Assuntos
Brassica napus/genética , Fenótipo , Fosfatos , Fósforo , Raízes de Plantas/genética , Locos de Características Quantitativas/genética
10.
J Pediatr Hematol Oncol ; 41(1): e47-e50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080754

RESUMO

An open-label, pilot study was conducted to evaluate deferasirox/deferiprone combination chelation therapy in adult patients with transfusion-dependent thalassemia and severe iron overload. Enrollment proved difficult. Nine patients (median age, 27.4 y; ferritin, 4965 ng/mL; liver iron concentration, 28.5 mg/g dry weight; cardiac T2*, 13.3 ms) received treatment. Two were withdrawn for treatment-related adverse effects. Arthralgia (4 patients) and gastrointestinal symptoms (5 patients) were common; no episodes of neutropenia/agranulocytosis occurred. Adherence difficulties were common. Of 6 patients with 12 to 18 months follow-up, 3 showed improvement in cardiac T2* and 2 in liver iron. Combination oral chelation may be effective but adverse effects and adherence challenges may limit efficacy.


Assuntos
Transfusão de Sangue , Deferasirox/administração & dosagem , Deferiprona/administração & dosagem , Sobrecarga de Ferro/tratamento farmacológico , Talassemia/terapia , Adulto , Deferasirox/efeitos adversos , Deferiprona/efeitos adversos , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Sobrecarga de Ferro/etiologia , Masculino , Projetos Piloto
11.
J Gen Virol ; 98(6): 1526-1536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635588

RESUMO

The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.


Assuntos
Variação Genética , Interações Hospedeiro-Patógeno , Rhabdoviridae/genética , Rhabdoviridae/fisiologia , Proteínas Virais/análise , Proteínas Virais/genética , Capsicum/virologia , Ordem dos Genes , Genoma Viral , Solanum lycopersicum/virologia , Microscopia Confocal , Fases de Leitura Aberta , Análise de Sequência de DNA , Solanum tuberosum/virologia , Nicotiana/virologia
12.
Sci Rep ; 7(1): 2179, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526844

RESUMO

In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences. The organic P fraction of soil contains phospholipids that are rapidly degraded resulting in the release of bioavailable Pi. However, the mechanisms behind this process remain unknown. We identified and experimentally confirmed the function of two secreted glycerolphosphodiesterases, GlpQI and GlpQII, found in Pseudomonas stutzeri DSM4166 and Pseudomonas fluorescens SBW25, respectively. A series of co-cultivation experiments revealed that in these Pseudomonas strains, cleavage of glycerolphosphorylcholine and its breakdown product G3P occurs extracellularly allowing other bacteria to benefit from this metabolism. Analyses of metagenomic and metatranscriptomic datasets revealed that this trait is widespread among soil bacteria with Actinobacteria and Proteobacteria, specifically Betaproteobacteria and Gammaproteobacteria, the likely major players.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Metagenoma , Metagenômica/métodos , Modelos Biológicos , Diester Fosfórico Hidrolases/genética , Pseudomonas/classificação , Pseudomonas/genética
13.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28419748

RESUMO

In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes. This analysis uncovered a marked reduction in the abundance and diversity of various alkaline phosphatases in low-pH soils that was not counterbalanced by an increase in acid phosphatases. Furthermore, it was also discovered that only half of the bacterial strains from different phyla deposited in the Integrated Microbial Genomes database harbor alkaline phosphatases. Taken together, our data suggests that these 'phosphatase lacking' isolates likely increase in low-pH soils and future research should ascertain how these bacteria overcome phosphorus scarcity.


Assuntos
Microbiota , Compostos Orgânicos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Solo/química , Variação Genética , Concentração de Íons de Hidrogênio , Metagenoma , Monoéster Fosfórico Hidrolases/genética
14.
Sci Rep ; 6: 33113, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624881

RESUMO

A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica.


Assuntos
Brassica napus , Fósforo/farmacologia , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
15.
Environ Microbiol ; 18(10): 3535-3549, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27233093

RESUMO

Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.


Assuntos
Fósforo/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Pseudomonas stutzeri/genética , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Genômica , Fosfatos/metabolismo , Proteômica , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas stutzeri/metabolismo , Regulon , Rizosfera
16.
Proc Natl Acad Sci U S A ; 113(4): 874-9, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504225

RESUMO

Globally, large-bodied wild mammals are in peril. Because "megamammals" have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼ 200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2-69.6 Tg CH4 y(-1) during the various time periods, representing a decrease of 0.8-34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate.


Assuntos
Clima , Ecossistema , Extinção Biológica , Herbivoria , Mamíferos/metabolismo , Metano/análise , Anaerobiose , Distribuição Animal , Animais , Animais Domésticos , Animais Selvagens , Bison , Digestão , Surtos de Doenças/história , Surtos de Doenças/veterinária , Europa (Continente) , Fermentação , Efeito Estufa , História Antiga , Atividades Humanas , Humanos , Gelo , Metano/metabolismo , Dispersão Vegetal , Plantas Comestíveis , Peste Bovina/história
17.
mBio ; 5(1): e00898-13, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24449751

RESUMO

UNLABELLED: Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. IMPORTANCE: Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and replicates in different body parts. In addition, the virus was detected inside the body of parasitic Varroa mites, which consume bee hemolymph, suggesting that Varroa mites may play a role in facilitating the spread of the virus in bee colonies. This study represents the first evidence that honeybees exposed to virus-contaminated pollen could also be infected and raises awareness of potential risks of new viral disease emergence due to host shift events. About 5% of known plant viruses are pollen transmitted, and these are potential sources of future host-jumping viruses. The findings from this study showcase the need for increased surveillance for potential host-jumping events as an integrated part of insect pollinator management programs.


Assuntos
Abelhas/virologia , Nepovirus/crescimento & desenvolvimento , Replicação Viral , Estruturas Animais/virologia , Animais , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Nepovirus/fisiologia , Filogenia , Pólen/virologia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Varroidae/virologia
18.
New Phytol ; 198(2): 546-556, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23421495

RESUMO

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10-280 mg l(-1) in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25 mg l(-1), particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.


Assuntos
Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Fósforo/farmacologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Solo/química , Análise por Conglomerados , Contagem de Colônia Microbiana , Enzimas de Restrição do DNA/metabolismo , Micorrizas/crescimento & desenvolvimento , Glycine max/microbiologia , Fatores de Tempo , Viola/microbiologia , Zea mays/microbiologia
19.
Ann Bot ; 112(2): 381-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23172414

RESUMO

BACKGROUND AND AIMS: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.


Assuntos
Brassica napus/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Biomassa , Brassica napus/anatomia & histologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico , Genótipo , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
20.
PLoS One ; 7(4): e35387, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536378

RESUMO

BACKGROUND: Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. METHODOLOGY AND FINDINGS: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. CONCLUSIONS: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.


Assuntos
Cucumis melo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fósforo/deficiência , Adaptação Fisiológica/genética , Biomassa , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos/genética , Lipídeos de Membrana/metabolismo , Redes e Vias Metabólicas/genética , Nutrigenômica , Fenótipo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA