RESUMO
Oilseed rape (Brassica napus) is one of the most important oil crops in the world and shows sensitivity to low phosphorus (P) availability. In many soils, organic P (Po) is the main component of the soil P pool. Po must be mineralised to Pi through phosphatases, and then taken up by plants. However, the relationship between root-secreted acid phosphatases (APase) and root morphology traits, two important P-acquisition strategies in response to P deficiency, is unclear among B. napus genotypes. This study aimed to understand their relationship and how they affect P acquisition, which is crucial for the sustainable utilisation of agricultural P resources. This study showed significant genotypic variations in root-secreted APase activity per unit root fresh weight (SAP) and total root-secreted APase activity per plant (total SAP) among 350 B. napus genotypes. Seed yield was positively correlated with total SAP but not significantly correlated with SAP. Six root traits of 18 B. napus genotypes with contrasting root biomass were compared under normal Pi, low Pi and Po. Genotypes with longer total root length (TRL) reduced SAP, but those with shorter TRL increased SAP under P deficiency. Additionally, TRL was important in P-acquisition under three P treatments, and total SAP was also important in P-acquisition under Po treatment. In conclusion, trade-offs existed between the two P-acquisition strategies among B. napus genotypes under P-deficient conditions. Total SAP was an important root trait under Po conditions. These results might help to breed B. napus with greater P-acquisition ability under low P availability conditions.
Assuntos
Brassica napus , Fósforo , Brassica napus/genética , Fosfatase Ácida/genética , Fenótipo , Genótipo , SoloRESUMO
Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.
Assuntos
Populus , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.
Assuntos
Brassica napus , Ácido Abscísico/metabolismo , Aclimatação , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2-aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant-growth-promoting rhizobacterium Pseudomonas putida BIRD-1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR-type regulator, termed AepR, upstream of the 2AEP transaminase-phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate-specific regulators in phosphonate metabolism.
Assuntos
Organofosfonatos , Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismoRESUMO
BACKGROUND AND AIMS: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS: An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS: A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION: Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.
Assuntos
Brassica napus , Brassica napus/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Fósforo , Melhoramento VegetalRESUMO
The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.
Assuntos
Ácido Aminoetilfosfônico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Minerais/metabolismo , Fósforo/metabolismo , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Cinética , Oceanos e Mares , Oxirredução , Filogenia , Proteômica , Pseudomonas putida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhodobacteraceae/genéticaRESUMO
Bacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA. For the first time, we also reveal a subset of Bacteroidetes outer membrane SusCD-like complexes, typically associated with carbon acquisition, and several TonB-dependent transporters, are induced during Pi-depletion. Furthermore, in response to phosphate depletion, the plant-associated Flavobacterium used in this study expressed many previously characterised and novel proteins targeting organic phosphorus. Collectively, these enzymes exhibited superior phosphatase activity compared to plant-associated Pseudomonas spp. Importantly, several of the novel low-Pi-inducible phosphatases and transporters, belong to the Bacteroidetes auxiliary genome and are an adaptive genomic signature of plant-associated strains. In conclusion, niche adaptation to the plant microbiome thus appears to have resulted in the acquisition of unique phosphorus scavenging loci in Bacteroidetes, enhancing their phosphorus acquisition capabilities. These traits may enable their success in the rhizosphere and also present exciting avenues to develop sustainable agriculture.
Assuntos
Microbiota , Fósforo , Bacteroidetes/genética , Raízes de Plantas , Plantas , RizosferaRESUMO
BACKGROUND AND AIMS: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies. METHODS: Shoot and root concentrations of 11 mineral elements (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES) in a Brassica napus double haploid population grown at an optimal (OP) and a low phosphorus supply (LP) in an agar system. Shoot, root and plant contents, and the partitioning of mineral elements between shoot and root were calculated. KEY RESULTS: The tissue concentrations of B, Ca, Cu, K, Mg, Mn, Na, P and Zn were reduced by P starvation, while the concentration of Fe was increased by P starvation in the BnaTNDH population. A total of 133 and 123 QTLs for shoot and root ionomic traits were identified at OP and LP, respectively. A major QTL cluster on chromosome C07 had a significant effect on shoot Mg and S concentrations at LP and was narrowed down to a 2.1 Mb region using an advanced backcross population. CONCLUSIONS: The tissue concentration and partitioning of each mineral element was affected differently by P starvation. There was a significant difference in mineral element composition between shoots and roots. Identification of the genes underlying these QTLs will enhance our understanding of processes affecting the uptake and partitioning of mineral elements in Brassica napus.
Assuntos
Brassica napus/genética , Fenótipo , Fosfatos , Fósforo , Raízes de Plantas/genética , Locos de Características Quantitativas/genéticaRESUMO
In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences. The organic P fraction of soil contains phospholipids that are rapidly degraded resulting in the release of bioavailable Pi. However, the mechanisms behind this process remain unknown. We identified and experimentally confirmed the function of two secreted glycerolphosphodiesterases, GlpQI and GlpQII, found in Pseudomonas stutzeri DSM4166 and Pseudomonas fluorescens SBW25, respectively. A series of co-cultivation experiments revealed that in these Pseudomonas strains, cleavage of glycerolphosphorylcholine and its breakdown product G3P occurs extracellularly allowing other bacteria to benefit from this metabolism. Analyses of metagenomic and metatranscriptomic datasets revealed that this trait is widespread among soil bacteria with Actinobacteria and Proteobacteria, specifically Betaproteobacteria and Gammaproteobacteria, the likely major players.
Assuntos
Diester Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Metagenoma , Metagenômica/métodos , Modelos Biológicos , Diester Fosfórico Hidrolases/genética , Pseudomonas/classificação , Pseudomonas/genéticaRESUMO
In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes. This analysis uncovered a marked reduction in the abundance and diversity of various alkaline phosphatases in low-pH soils that was not counterbalanced by an increase in acid phosphatases. Furthermore, it was also discovered that only half of the bacterial strains from different phyla deposited in the Integrated Microbial Genomes database harbor alkaline phosphatases. Taken together, our data suggests that these 'phosphatase lacking' isolates likely increase in low-pH soils and future research should ascertain how these bacteria overcome phosphorus scarcity.
Assuntos
Microbiota , Compostos Orgânicos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Solo/química , Variação Genética , Concentração de Íons de Hidrogênio , Metagenoma , Monoéster Fosfórico Hidrolases/genéticaRESUMO
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica.
Assuntos
Brassica napus , Fósforo/farmacologia , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimentoRESUMO
Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.
Assuntos
Fósforo/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Pseudomonas stutzeri/genética , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Genômica , Fosfatos/metabolismo , Proteômica , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas stutzeri/metabolismo , Regulon , RizosferaRESUMO
High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10-280 mg l(-1) in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25 mg l(-1), particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.
Assuntos
Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Fósforo/farmacologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Solo/química , Análise por Conglomerados , Contagem de Colônia Microbiana , Enzimas de Restrição do DNA/metabolismo , Micorrizas/crescimento & desenvolvimento , Glycine max/microbiologia , Fatores de Tempo , Viola/microbiologia , Zea mays/microbiologiaRESUMO
BACKGROUND AND AIMS: Phosphate (Pi) deï¬ciency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deï¬ciency, and these QTL warrant further dissection.
Assuntos
Brassica napus/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Biomassa , Brassica napus/anatomia & histologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Mapeamento Cromossômico , Genótipo , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismoRESUMO
BACKGROUND: Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. METHODOLOGY AND FINDINGS: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. CONCLUSIONS: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.
Assuntos
Cucumis melo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fósforo/deficiência , Adaptação Fisiológica/genética , Biomassa , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos/genética , Lipídeos de Membrana/metabolismo , Redes e Vias Metabólicas/genética , Nutrigenômica , Fenótipo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais/genéticaRESUMO
BACKGROUND AND AIMS: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. METHODS: Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 â 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. KEY RESULTS: There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. CONCLUSIONS: These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 °C, producing a considerable saving in energy and costs.
Assuntos
Armazenamento de Alimentos , Cebolas/fisiologia , Raízes de Plantas/fisiologia , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Glucose/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Cebolas/genética , Cebolas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sacarose/metabolismo , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reino UnidoRESUMO
BACKGROUND: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. RESULTS: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. CONCLUSIONS: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.
Assuntos
Fósforo/deficiência , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Máquina de Vetores de SuporteRESUMO
Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 µL L(-1) ethylene or 1 µL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 µL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.
Assuntos
Ciclopropanos/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Cebolas/genética , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Genes de Plantas/genética , Cebolas/citologia , Cebolas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Temperatura , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.