Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 7(7): e07537, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34345731

RESUMO

The application of essential oils in food and pharmaceutical sectors face several challenges due to their sensitivity to oxidation process. Additionally, the biosynthesis of nanometals is growing rapidly; however, the toxicity of these particles against living organisms did not well explore yet. This study aimed to determine the bioactive compounds in basil essential oil (BEO) using GC-MS, to encapsulate and characterize BEO and to evaluate its protective role against the oxidative stress and genotoxicity of biosynthesized iron nanoparticles (Fe-NPs) in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, Fe-NPs-treated group (100 mg/kg b.w.); EBEO-treated groups at low (100 mg/kg b.w.) or high (200 mg/kg b.w.) dose and the groups treated with Fe-NPs plus the low or the high dose of EBEO. The GC-MS analysis revealed the identification of 48 compounds and linalool was the major compound. The average sizes and zeta potential of the synthesized Fe-NPs and EBEO were 60 ± 4.76 and 120 ± 3.2 nm and 42.42 mV and -6.4 mV, respectively. Animals treated with Fe-NPs showed significant increase in serum biochemical analysis, oxidative stress markers, cytokines, lipid profile, DNA fragmentation and antioxidant enzymes and their gene expression and severe changes in the histology of liver and kidney tissues. Administration of Fe-NPs plus EBEO alleviated these disturbances and the high dose could normalize most of the tested parameters and improved the histology of liver and kidney. It could be concluded that caution should be taken in using the biosynthesized metal nanoparticles in different application. EBEO is a potent candidate to protect against the hazards of metal nanoparticles and can be applied in food and medical applications.

2.
Environ Sci Pollut Res Int ; 28(48): 68498-68512, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34275073

RESUMO

This study was conducted to identify the bioactive phytochemicals in Salvia officinalis essential oil, to determine the polyphenols in the aqueous extract (SOE), and to evaluate their protective role against cadmium (Cd)-induced oxidative damage and genotoxicity in rats. Six groups of female rats were treated orally for 2 weeks including the control group, CdCl2-treated group, SOE-treated groups at low or high dose (100 and 200 mg/kg b.w), and CdCl2 plus SOE-treated groups at the two doses. The GC-MS analysis identified 39 compounds; the main compounds were 9-octadecenamide, eucalyptol, palmitic acid, and oleic acid. However, the HPLC analysis showed 12 polyphenolic compounds and the majority were coumaric acid, chlorogenic acid, coffeic acid, catechin, vanillin, gallic acid, ellagic acid, and rutin. In the biological study, rats received CdCl2 displayed severe disturbances in liver and kidney indices alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), total protein (TP), total bilirubin (T. Bil), direct bilirubin (D. Bil), creatinine, uric acid, and urea, lipid profile, tumor necrosis factor-alpha (TNF-α), alpha-fetoprotein (AFP) and CEA), glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA), nitric oxide (NO), gene expressions, DNA fragmentation, and histological alterations in the liver and kidney tissue. SOE showed a potent antioxidant and mitigated these alterations in serum and tissue. Moreover, the high dose succeeded to normalize most of the tested parameters and histological features. It could be concluded that S. officinalis is a promising source for bioactive compounds with therapeutic benefits against environmental toxicants.


Assuntos
Cádmio , Salvia officinalis , Animais , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Feminino , Fígado/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos , Ratos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA