Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2312024, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101802

RESUMO

Single-atom nanozymes (SAzymes), with well-defined and uniform atomic structures, are an emerging type of natural enzyme mimics. Currently, it is important but challenging to rationally design high-performance SAzymes and deeply reveal the interaction mechanism between SAzymes and substrate molecules. Herein, this work reports the controllable fabrication of a unique Cu-N1S2-centred SAzyme (Cu-N/S-C) via a chemical vapor deposition-based sulfur-engineering strategy. Benefiting from the optimized geometric and electronic structures of single-atom sites, Cu-N/S-C SAzyme shows boosted enzyme-like activity, especially in catalase-like activity, with a 13.8-fold increase in the affinity to hydrogen peroxide (H2O2) substrate and a 65.2-fold increase in the catalytic efficiency when compared to Cu-N-C SAzyme with Cu-N3 sites. Further theoretical studies reveal that the increased electron density around single-atom Cu is achieved through electron redistribution, and the efficient charge transfer between Cu-N/S-C and H2O2 is demonstrated to be more beneficial for the adsorption and activation of H2O2. The as-designed Cu-N/S-C SAzyme possesses an excellent antitumor effect through the synergy of catalytic therapy and oxygen-dependent phototherapy. This study provides a strategy for the rational design of SAzymes, and the proposed electron redistribution and charge transfer mechanism will help to understand the coordination environment effect of single-atom metal sites on H2O2-mediated enzyme-like catalytic processes.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Engenharia , Engenharia Química , Fototerapia , Catálise , Gases , Neoplasias/terapia
2.
Small ; 17(10): e2007090, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464716

RESUMO

Dual phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has shown a great prospect in cancer treatment. However, its therapeutic effect is restricted by the depth of light penetration in tissue and tumor hypoxia environment. Herein, inspired by the specific response of nanozymes to the tumor microenvironment (TME), a simple and versatile nanozyme-mediated synergistic dual phototherapy nanoplatform (denoted as FePc/HNCSs) is constructed using hollow nitrogen-doped carbon nanospheres (HNCSs) and iron phthalocyanine (FePc). FePc/HNCSs simultaneously exhibit peroxidase (POD)- and catalase (CAT)-like activities, which not only can convert endogenous hydrogen peroxide (H2 O2 ) into highly toxic hydroxyl radicals (•OH) for catalytic therapy, but also decompose H2 O2 to oxygen (O2 ) to enhance O2 -dependent PDT. In addition, their enzyme-like activities are significantly enhanced under light irradiation. Combining with the excellent photothermal effect, FePc/HNCSs realize a high tumor inhibition rate of 96.3%. This strategy opens a new horizon for exploring a more powerful tumor treatment nanoplatform.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Fototerapia , Hipóxia Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA