Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 18(11): 2008-2020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434693

RESUMO

The restricted expression pattern of B-cell maturation antigen (BCMA) makes it an ideal tumor-associated antigen (TAA) for the treatment of myeloma. BCMA has been targeted by both CD3 bispecific antibody and antibody-drug conjugate (ADC) modalities, but a true comparison of modalities has yet to be performed. Here we utilized a single BCMA antibody to develop and characterize both a CD3 bispecific and 2 ADC formats (cleavable and noncleavable) and compared activity both in vitro and in vivo with the aim of generating an optimal therapeutic. Antibody affinity, but not epitope was influential in drug activity and hence a high-affinity BCMA antibody was selected. Both the bispecific and ADCs were potent in vitro and in vivo, causing dose-dependent cell killing of myeloma cell lines and tumor regression in orthotopic myeloma xenograft models. Primary patient cells were effectively lysed by both CD3 bispecific and ADCs, with the bispecific demonstrating improved potency, maximal cell killing, and consistency across patients. Safety was evaluated in cynomolgus monkey toxicity studies and both modalities were active based on on-target elimination of B lineage cells. Distinct nonclinical toxicity profiles were seen for the bispecific and ADC modalities. When taken together, results from this comparison of BCMA CD3 bispecific and ADC modalities suggest better efficacy and an improved toxicity profile might be achieved with the bispecific modality. This led to the advancement of a bispecific candidate into phase I clinical trials.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Antígeno de Maturação de Linfócitos B/metabolismo , Complexo CD3/imunologia , Imunoconjugados/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacologia , Afinidade de Anticorpos , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacologia , Camundongos , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 13(8): e0201832, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133535

RESUMO

CD47 is a widely expressed cell surface protein that functions as an immune checkpoint in cancer. When expressed by tumor cells, CD47 can bind SIRPα on myeloid cells, leading to suppression of tumor cell phagocytosis and other innate immune functions. CD47-SIRPα signaling has also been implicated in the suppression of adaptive antitumor responses, but the relevant cellular functions have yet to be elucidated. Therapeutic blockade of the CD47 pathway may stimulate antitumor immunity and improve cancer therapy. To this end, a novel CD47-blocking molecule, ALX148, was generated by fusing a modified SIRPα D1 domain to an inactive human IgG1 Fc. ALX148 binds CD47 from multiple species with high affinity, inhibits wild type SIRPα binding, and enhances phagocytosis of tumor cells by macrophages. ALX148 has no effect on normal human blood cells in vitro or on blood cell parameters in rodent and non-human primate studies. Across several murine tumor xenograft models, ALX148 enhanced the antitumor activity of different targeted antitumor antibodies. Additionally, ALX148 enhanced the antitumor activity of multiple immunotherapeutic antibodies in syngeneic tumor models. These studies revealed that CD47 blockade with ALX148 induces multiple responses that bridge innate and adaptive immunity. ALX148 stimulates antitumor properties of innate immune cells by promoting dendritic cell activation, macrophage phagocytosis, and a shift of tumor-associated macrophages toward an inflammatory phenotype. ALX148 also stimulated the antitumor properties of adaptive immune cells, causing increased T cell effector function, pro-inflammatory cytokine production, and a reduction in the number of suppressive cells within the tumor microenvironment. Taken together, these results show that ALX148 binds and blocks CD47 with high affinity, induces a broad antitumor immune response, and has a favorable safety profile.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antígeno CD47/antagonistas & inibidores , Imunidade Inata/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias/imunologia , Fagocitose/efeitos dos fármacos , Primatas , Ratos
3.
Toxicol Pathol ; 42(4): 725-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705884

RESUMO

Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças Vasculares/patologia , Animais , Anticorpos Monoclonais/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Complemento C3/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Haplorrinos , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Imuno-Histoquímica , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Doenças Vasculares/induzido quimicamente
4.
Toxicol Pathol ; 42(4): 765-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24616262

RESUMO

Two 6-month repeat-dose toxicity studies in cynomolgus monkeys illustrated immune complex-mediated adverse findings in individual monkeys and identified parameters that potentially signal the onset of immune complex-mediated reactions following administration of RN6G, a monoclonal antibody (mAb). In the first study, 3 monkeys exhibited nondose-dependent severe clinical signs accompanied by decreased erythrocytes with increased reticulocytes, neutrophilia, monocytosis, thrombocytopenia, coagulopathy, decreased albumin, azotemia, and increased serum levels of activated complement products, prompting unscheduled euthanasia. Histologically, immunohistochemical localization of RN6G was associated with monkey immunoglobulin and complement components in glomeruli and other tissues, attributable to immune complex disease (ICD). All 3 animals also had anti-RN6G antibodies and decreased plasma levels of RN6G. Subsequently, an investigational study was designed and conducted with regulatory agency input to detect early onset of ICD and assess reversibility to support further clinical development. Dosing of individual animals ceased when biomarkers of ICD indicated adverse findings. Of the 12 monkeys, 1 developed anti-RN6G antibodies and decreased RN6G exposure that preceded elevations in complement products, interleukin-6, and coagulation parameters and decreases in albumin and fibrinogen. All findings in this monkey, except for antidrug antibody (ADA), reversed after cessation of dosing without progressing to adverse sequelae typically associated with ICD.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Biomarcadores/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças do Complexo Imune/sangue , Animais , Anticorpos Monoclonais/sangue , Proteína C-Reativa/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Doenças do Complexo Imune/induzido quimicamente , Doenças do Complexo Imune/patologia , Imuno-Histoquímica , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Macaca fascicularis , Masculino , Microscopia Eletrônica de Transmissão , Fator de Necrose Tumoral alfa/sangue , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA