Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 9927864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795844

RESUMO

Bisdemethoxycurcumin is one of the three curcuminoids of turmeric and exhibits good antioxidant activity in animal models. This study is aimed at investigating the effect of bisdemethoxycurcumin on small intestinal mitochondrial dysfunction in lipopolysaccharide- (LPS-) treated broilers, especially on the mitochondrial thioredoxin 2 system and mitochondrial biogenesis. A total of 320 broiler chickens were randomly assigned into four experimental diets using a 2 × 2 factorial arrangement with diet (0 and 150 mg/kg bisdemethoxycurcumin supplementation) and stress (saline or LPS challenge) for 20 days. Broilers received a dose of LPS (1 mg/kg body weight) or sterile saline intraperitoneally on days 16, 18, and 20 of the trial. Bisdemethoxycurcumin mitigated the mitochondrial dysfunction of jejunum and ileum induced by LPS, as evident by the reduced reactive oxygen species levels and the increased mitochondrial membrane potential. Bisdemethoxycurcumin partially reversed the decrease in the mitochondrial DNA copy number and the depletion of ATP levels. Bisdemethoxycurcumin activated the mitochondrial antioxidant response, including the prevention of lipid peroxidation, enhancement of manganese superoxide dismutase activity, and the upregulation of the mitochondrial glutaredoxin 5 and thioredoxin 2 system. The enhanced mitochondrial respiratory complex activities in jejunum and ileum were also attributed to bisdemethoxycurcumin treatment. In addition, bisdemethoxycurcumin induced mitochondrial biogenesis via transcriptional regulation of proliferator-activated receptor-gamma coactivator-1alpha pathway. In conclusion, our results demonstrated the potential of bisdemethoxycurcumin to attenuate small intestinal mitochondrial dysfunction, which might be mediated via activating the mitochondrial antioxidant system and mitochondrial biogenesis in LPS-treated broilers.


Assuntos
Antioxidantes/metabolismo , Diarileptanoides/farmacologia , Enteropatias/prevenção & controle , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Galinhas , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Enteropatias/induzido quimicamente , Enteropatias/metabolismo , Enteropatias/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664650

RESUMO

Bisdemethoxycurcumin has good antioxidant and anti-inflammatory effects and has been widely used as food and feed supplements in the form of curcuminoids. However, the beneficial effect of individual bisdemethoxycurcumin on preventing lipopolysaccharide (LPS)-induced inflamed intestinal damage is unclear. The present study aimed to investigate whether dietary bisdemethoxycurcumin supplementation could attenuate LPS-induced intestinal damage and alteration of cecal microbiota in broiler chickens. In total, 320 one-day-old male Arbor Acres broiler chickens with a similar weight were randomly divided into four treatments. The treatments were designed as a 2 × 2 factorial arrangement: basal diet (CON); 150 mg/kg bisdemethoxycurcumin diet (BUR); LPS challenge + basal diet (LPS); LPS challenge + 150 mg/kg bisdemethoxycurcumin diet (L-BUR). Results showed that dietary bisdemethoxycurcumin supplementation attenuated the LPS-induced decrease of average daily feed intake. LPS challenge compromised the intestinal morphology and disrupted the intestinal tight junction barrier. Dietary bisdemethoxycurcumin supplementation significantly increased villus length:crypt depth ratio and upregulated the mRNA expression of intestinal tight junction proteins. Moreover, a remarkably reduced mRNA expression of inflammatory mediators was observed following bisdemethoxycurcumin supplementation. The cecal microbiota analysis showed that bisdemethoxycurcumin supplementation increased the relative abundance of the genus Faecalibacterium while decreased the relative abundance of the genera Bacteroides and Subdoligranulum. In conclusion, dietary bisdemethoxycurcumin supplementation could counteract LPS-induced inflamed intestinal damage in broiler chickens by improving intestinal morphology, maintaining intestinal tight junction, downregulating pro-inflammatory mediators, and restoring cecal microbiota.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , Ração Animal/análise , Animais , Galinhas , Diarileptanoides , Dieta/veterinária , Suplementos Nutricionais/análise , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/veterinária , Masculino
3.
Poult Sci ; 100(5): 101061, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756250

RESUMO

This study was conducted to investigate the beneficial effects of bisdemethoxycurcumin (BDC) on growth performance, glutathione (GSH) redox potential, antioxidant enzyme defense, and gene expression in lipopolysaccharide (LPS)-challenged broilers. A total of 320, male, 1-day-old broilers were randomly assigned to 4 treatment groups including 8 replicates with 10 birds per cage in a 2 × 2 factorial arrangement: BDC supplementation (a basal diet with 0 or 150 mg/kg BDC) and LPS challenge (intraperitoneal injection of 1 mg/kg body weight saline or LPS at 16, 18, and 20 d of age). Results showed that dietary BDC supplementation prevented the LPS-induced decrease in ADG of broilers (P < 0.05). Compared to the saline-challenged group, LPS-challenged broilers showed higher jejunal and ileal malondialdehyde (MDA), protein carbonyl (PC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents (P < 0.05). Dietary BDC supplementation alleviated LPS-induced increases in jejunal 8-OHdG, ileal MDA, and PC contents (P < 0.05). LPS challenge impaired the small intestinal antioxidant system, as evident by the decreases of GSH and total thiol contents, as well as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase (GR), and glutathione S-transferase (GST) activities. On the other hand, LPS challenge also increased GSH redox potential and oxidized glutathione (GSSG) contents (P < 0.05). Dietary BDC supplementation increased jejunal and ileal GSH contents, SOD activities, jejunal GR activity, and ileal GST activity, while it decreased jejunal and ileal redox potential, and jejunal GSSG contents (P < 0.05). Dietary BDC supplementation significantly alleviated the downregulation of mRNA expression levels of jejunal and ileal copper and zinc superoxide dismutase, catalytic subunit of γ-glutamylcysteine ligase, nuclear factor erythroid-2-related factor 2, heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and jejunal catalase and GR induced by LPS challenge (P < 0.05). In conclusion, BDC demonstrated favorable protection against LPS-induced small intestinal oxidative damages, as indicated by the improved growth performance, decreased GSH redox potential, enhanced antioxidant enzyme activities, and upregulated antioxidant-related gene expression.


Assuntos
Galinhas , Lipopolissacarídeos , Ração Animal/análise , Animais , Antioxidantes , Diarileptanoides , Dieta/veterinária , Suplementos Nutricionais , Masculino , Oxirredução
4.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954422

RESUMO

This study was conducted to investigate the effect of taurine as a prophylactic treatment on antioxidant function and inflammatory responses of broilers challenged with lipopolysaccharide (LPS). A total of 256 one-day-old male Arbor Acres broiler chicks were randomly assigned to four treatments with eight replicates of eight birds (eight birds per cage). Four treatment groups were designated as follows: 1) in the CON group, broilers fed a basal diet; 2) in the LPS group, LPS-challenged broilers fed a basal diet; 3) in the LPS + T1 group, LPS-challenged broilers fed a basal diet supplemented with 5.0 g/kg taurine; and 4) in the LPS + T2 group, LPS-challenged broilers fed a basal diet supplemented with 7.5 g/kg taurine. The LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 16, 18, and 20 d of age, whereas the CON group received an injection of sterile saline. The results showed that broilers injected with LPS exhibited decreased (P < 0.05) the average daily gain (ADG) and the 21-d BW (P < 0.05), while taurine supplementation alleviated the negative effects of LPS. Additionally, the LPS-induced increases (P < 0.05) in serum alanine transaminase and aspartate transaminase activities were reversed by taurine supplementation. The taurines could alleviate the hepatic oxidative stress, with the presence of lower content of malondialdehyde (P < 0.05), higher content of glutathione (P < 0.05), and an increased glutathione peroxidase (GSH-Px) activity (P < 0.05). The concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the liver were measured by ELISA kits, and the result showed that dietary taurine supplementation prevented these cytokines increases in the liver of LPS-induced broilers. Taurine reduced the genes expression of IL-1ß, TNF-α, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, whereas it boosted the expression levels of antioxidant-related genes (nuclear factor erythroid 2-related factor 2, heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and GSH-Px) in the liver of LPS-induced broilers. In conclusion, dietary taurine supplementation in broilers mitigated LPS-induced defects in ADG, oxidative stress, and inflammatory responses.


Assuntos
Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Lipopolissacarídeos/efeitos adversos , Taurina/administração & dosagem , Animais , Antioxidantes/metabolismo , Galinhas/crescimento & desenvolvimento , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/veterinária , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA