Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Waste Manag ; 169: 32-42, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393754

RESUMO

The facile recycling of spent lithium-ion batteries (LIBs) has attracted considerable attention because of its great importance to environmental protection and resource utilization. A novel process is developed for cyclic utilization of spent LiNixCoyMnzO2 (NCM) batteries. The spent NCM was converted into water-soluble Li2CO3, acid-dissolved MnO, and nickel-cobalt sulfides through selective sulfidation, based on roasting condition optimization and thermodynamic calculation. More than 98 % of lithium is extracted preferentially from calcined NCM through water leaching, and over 99 % of manganese is extracted selectively from water leaching residue with H2SO4 solution of 0.4 mol/L in the absence of additional reductant. The nickel and cobalt sulfides were concentrated into the leaching residue without metal impurities. The obtained Li2CO3, MnSO4, and nickel-cobalt sulfides can be regenerated as new NCM, showing good electrochemical performance, and its discharge capacity is 169.8 mAh/g at 0.2C. After 100 cycles at 0.2C, the discharge specific capacity can still be maintained at 143.24 mAh/g, and its capacity retention ratio is as high as 92  %. An environmental assessment and economic evaluation indicate that the process is an economical and eco-friendly approach for green recycling of spent LIBs.


Assuntos
Lítio , Níquel , Cobalto , Fontes de Energia Elétrica , Reciclagem , Sulfetos
2.
Med Image Anal ; 83: 102665, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370512

RESUMO

Deep learning approaches have been widely adopted in the medical image analysis field. However, a most of existing deep learning approaches focus on achieving promising performances such as classification, detection, and segmentation, and much less effort is devoted to the explanation of the designed models. Similarly, in the brain imaging field, many deep learning approaches have been designed and applied to characterize and predict human brain states. However, these models lack interpretation. In response, we propose a novel domain knowledge informed self-attention graph pooling-based (SAGPool) graph convolutional neural network to study human brain states. Specifically, the dense individualized and common connectivity-based cortical landmarks system (DICCCOL, structural brain connectivity profiles) and holistic atlases of functional networks and interactions system (HAFNI, functional brain connectivity profiles) are integrated with the SAGPool model to better characterize and interpret the brain states. Extensive experiments are designed and carried out on the large-scale human connectome project (HCP) Q1 and S1200 dataset. Promising brain state classification performances are observed (e.g., an average of 93.7% for seven-task classification and 100% for binary classification). In addition, the importance of the brain regions, which contributes most to the accurate classification, is successfully quantified and visualized. A thorough neuroscientific interpretation suggests that these extracted brain regions and their importance calculated from self-attention graph pooling layer offer substantial explainability.


Assuntos
Aprendizado Profundo , Humanos , Encéfalo/diagnóstico por imagem
3.
Med Image Anal ; 80: 102518, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749981

RESUMO

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.


Assuntos
Conectoma , Rede Nervosa , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Redes Neurais de Computação
4.
Neuroinformatics ; 16(3-4): 309-324, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29488069

RESUMO

In recent years, natural stimuli such as audio excerpts or video streams have received increasing attention in neuroimaging studies. Compared with conventional simple, idealized and repeated artificial stimuli, natural stimuli contain more unrepeated, dynamic and complex information that are more close to real-life. However, there is no direct correspondence between the stimuli and any sensory or cognitive functions of the brain, which makes it difficult to apply traditional hypothesis-driven analysis methods (e.g., the general linear model (GLM)). Moreover, traditional data-driven methods (e.g., independent component analysis (ICA)) lack quantitative modeling of stimuli, which may limit the power of analysis models. In this paper, we propose a sparse representation based decoding framework to explore the neural correlates between the computational audio features and functional brain activities under free listening conditions. First, we adopt a biologically-plausible auditory saliency feature to quantitatively model the audio excerpts and meanwhile develop sparse representation/dictionary learning method to learn an over-complete dictionary basis of brain activity patterns. Then, we reconstruct the auditory saliency features from the learned fMRI-derived dictionaries. After that, a group-wise analysis procedure is conducted to identify the associated brain regions and networks. Experiments showed that the auditory saliency feature can be well decoded from brain activity patterns by our methods, and the identified brain regions and networks are consistent and meaningful. At last, our method is evaluated and compared with ICA method and experimental results demonstrated the superiority of our methods.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Humanos , Distribuição Aleatória
5.
Brain Imaging Behav ; 11(1): 253-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26860834

RESUMO

Recent studies have demonstrated a close relationship between computational acoustic features and neural brain activities, and have largely advanced our understanding of auditory information processing in the human brain. Along this line, we proposed a multidisciplinary study to examine whether power spectral density (PSD) profiles can be decoded from brain activities during naturalistic auditory experience. The study was performed on a high resolution functional magnetic resonance imaging (fMRI) dataset acquired when participants freely listened to the audio-description of the movie "Forrest Gump". Representative PSD profiles existing in the audio-movie were identified by clustering the audio samples according to their PSD descriptors. Support vector machine (SVM) classifiers were trained to differentiate the representative PSD profiles using corresponding fMRI brain activities. Based on PSD profile decoding, we explored how the neural decodability correlated to power intensity and frequency deviants. Our experimental results demonstrated that PSD profiles can be reliably decoded from brain activities. We also suggested a sigmoidal relationship between the neural decodability and power intensity deviants of PSD profiles. Our study in addition substantiates the feasibility and advantage of naturalistic paradigm for studying neural encoding of complex auditory information.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Filmes Cinematográficos , Máquina de Vetores de Suporte , Adulto Jovem
6.
IEEE Trans Biomed Eng ; 62(4): 1120-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25420254

RESUMO

For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Bases de Dados Factuais , Feminino , Humanos , Masculino , Adulto Jovem
7.
Brain Imaging Behav ; 9(2): 162-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24526569

RESUMO

Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Música , Fala , Estimulação Acústica/métodos , Humanos , Modelos Neurológicos
8.
Biomed Res Int ; 2014: 325697, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057481

RESUMO

High-throughput metabolomics technology, such as gas chromatography mass spectrometry, allows the analysis of hundreds of metabolites. Understanding that these metabolites dominate the study condition from biological pathway perspective is still a significant challenge. Pathway identification is an invaluable aid to address this issue and, thus, is urgently needed. In this study, we developed a network-based metabolite pathway identification method, MPINet, which considers the global importance of metabolites and the unique character of metabolomic profile. Through integrating the global metabolite functional network structure and the character of metabolomic profile, MPINet provides a more accurate metabolomic pathway analysis. This integrative strategy simultaneously captures the global nonequivalence of metabolites in a pathway and the bias from metabolomic experimental technology. We then applied MPINet to four different types of metabolite datasets. In the analysis of metastatic prostate cancer dataset, we demonstrated the effectiveness of MPINet. With the analysis of the two type 2 diabetes datasets, we show that MPINet has the potentiality for identifying novel pathways related with disease and is reliable for analyzing metabolomic data. Finally, we extensively applied MPINet to identify drug sensitivity related pathways. These results suggest MPINet's effectiveness and reliability for analyzing metabolomic data across multiple different application fields.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Metabolômica/métodos , Neoplasias da Próstata/metabolismo , Algoritmos , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Metaboloma , Metástase Neoplásica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA