Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Med ; 77(3): 464-475, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884159

RESUMO

Tubulointerstitial fibrosis is a common pathological change in end-stage renal disease. However, limited treatment methods are developed, and unexplained potential mechanisms of renal diseases are urgent problems to be solved. In the present research, we first elucidated the role of podocarpusflavone (POD), a biflavone compound, in unilateral ureteral obstruction (UUO) in rodent model which is characterized by inflammation and fibrosis. The changes in histology and immunohistochemistry were observed that POD exerted renoprotective effects by retarding the infiltration of macrophage and aberrant deposition of ɑ-SMA, Col1a1, and fibronectin. Consistent with in vivo assay, POD treatment also ameliorated the process of fibrosis in TGF-ß1-stimulated renal tubular epithelial cells and inflammation in LPS-induced RAW264.7 cells in vitro. In terms of mechanism, our results showed that treatment with POD inhibited the aggravated activation of Fyn in the UUO group, and weakened the level of phosphorylation of Stat3 which indicated that POD may alleviate the process of fibrosis by the Fyn/Stat3 signaling pathway. Furthermore, the gain of function assay by lentivirus-mediated exogenous forced expression of Fyn abrogated the therapeutic effect of the POD on renal fibrosis and inflammation. Collectively, it can be concluded that POD exerted a protective effect on renal fibrosis by mediating Fyn/Stat3 signaling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Fibrose , Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Proteínas Proto-Oncogênicas c-fyn/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Animais
2.
J Ethnopharmacol ; 302(Pt B): 115917, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36414215

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu plaster (HJP) is a kind of Chinese patent medicine that contains four medicinal plants. It has been clinically proven to be beneficial for the treatment of tumor-associated radiation dermatitis. However, the underlying mechanism of HJP on radiation dermatitis remains unclear. AIM OF THE STUDY: This study aims to investigate the therapeutic effect of HJP on X-ray-induced radiation dermatitis, and how HJP improves the inflammatory response and skin damage of radiation dermatitis. MATERIALS AND METHODS: In this study, We selected a case of esophageal cancer as a clinical demonstration of the efficacy of radiation dermatitis. The patient received a total radiation dose of 7000cGY, and treatment by HJP for 14 days.RD mouse models were established through continuous irradiation with X-ray (800cGY) on the right hind limb of mice for 5 days, and the treatment group mice was applied HJP to the irradiated skin for 15 days from modeling. An inflammatory cellular model was induced through irradiation with X-ray (100cGY) in JB6 cells and a co-culture system of JB6 cell and macrophage was established to examine the effect and mechanism of HJP on the inflammatory interaction of these two cells. The activation of HMGB1-TLR4-NF-κB signaling pathway, and the levels of epidermal injury related factors and inflammatory cytokins were subsequently detected. RESULTS: The results showed that HJP can significantly alleviate X-ray-induced skin injury, inhibiting skin inflammation and reducing the expression of inflammatory cytokins (IL-1ß, IL-6, TNF-α) and epidermal damage related factors (Integrin ß1, CXCL9 and Cytokeratin17), as well as significantly down-regulated the protein level of HMGB1 (a key DAMPs factor) in vivo and in vitro. Cell co-culture experiments demonstrated that HMGB1 released from X-ray-induced JB6 cells can promote inflammatory response of macrophage, which then feedback aggravate epithelial cell damage, notably, HJP can significantly improve radiation skin lesion by inhibiting HMGB1-mediated inflammatory interaction between epithelial cells and macrophages. CONCLUSION: In summary, these findings indicated the role of HJP in the treatment of RD by inhibiting the inflammatory interaction between macrophage and JB6 cells mediated by HMGB1, which may provide a reliable therapeutic method for RD. Furthermore, HMGB1 may be an effective target for HJP to inhibit inflammation and ameliorate skin damage in RD.


Assuntos
Dermatite , Proteína HMGB1 , Camundongos , Animais , Raios X , Macrófagos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA