Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ocul Pharmacol Ther ; 40(3): 181-188, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38386983

RESUMO

Purpose: This study aimed to explore the effects of elevated KDM4D expression and potential therapeutic effects of Lycium barbarum polysaccharide (LBP) on pterygium. Methods: The expression levels of KDM4D in the primary pterygium (n = 29) and normal conjunctiva (n = 14) were detected by immunohistochemistry. The effects of KDM4D on pterygium fibroblasts were detected by the CCK-8 assay, liquid chromatography-mass spectrometry assay, flow cytometry, and scratch wound healing assay. The relative expression of KDM4D in pterygium fibroblasts stimulated by interleukin (IL)-1ß, IL-6, IL-8, and LBP was detected by quantitative real-time PCR and Western blot. The effects of LBP on pterygium fibroblasts were detected using flow cytometry and scratch wound healing assays. Results: The expression level of KDM4D in pterygium was higher than that in normal conjunctiva. KDM4D increased the cell viability of pterygium fibroblasts. The differentially expressed genes identified in the LM-MS assay enriched in "actin filament organization" and "apoptosis." KDM4D promoted migration and inhibited apoptosis of pterygium fibroblasts in vitro. Inflammatory cytokines, including IL-1ß, IL-6, and IL-8, enhanced the expression of KDM4D in pterygium fibroblasts. LBP inhibited the expression of KDM4D in pterygium fibroblasts and decreased their cell viability. Moreover, LBP attenuated the KDM4D effects on migration and apoptosis of pterygium fibroblasts. Conclusions: Elevated KDM4D expression is a risk factor for pterygium formation. LBP inhibits the expression of KDM4D in pterygium fibroblasts and may be a potential drug for delaying pterygium development.


Assuntos
Túnica Conjuntiva/anormalidades , Medicamentos de Ervas Chinesas , Pterígio , Humanos , Pterígio/tratamento farmacológico , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
2.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298805

RESUMO

With the increasing energy demand, oil is still an important fuel source worldwide. The chemical flooding process is used in petroleum engineering to increase the recovery of residual oil. As a promising enhanced oil-recovery technology, polymer flooding still faces some challenges in achieving this goal. The stability of a polymer solution is easily affected by the harsh reservoir conditions of high temperature and high salt, and the influence of the external environment such as high salinity, high valence cations, pH value, temperature and its own structure is highlighted. This article also involves the introduction of commonly used nanoparticles, whose unique properties are used to improve the performance of polymers under harsh conditions. The mechanism of nanoparticle improvement on polymer properties is discussed, that is, how the interaction between them improves the viscosity, shear stability, heat-resistance and salt-tolerant performance of the polymer. Nanoparticle-polymer fluids exhibit properties that they cannot exhibit by themselves. The positive effects of nanoparticle-polymer fluids on reducing interfacial tension and improving the wettability of reservoir rock in tertiary oil recovery are introduced, and the stability of nanoparticle-polymer fluid is described. While analyzing and evaluating the research on nanoparticle-polymer fluid, indicating the obstacles and challenges that still exist at this stage, future research work on nanoparticle-polymer fluid is proposed.


Assuntos
Nanopartículas , Petróleo , Polímeros/química , Fenômenos Químicos , Viscosidade , Nanopartículas/química
3.
J Cell Mol Med ; 25(15): 7169-7180, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180143

RESUMO

In diabetes-induced complications, inflammatory-mediated endothelial dysfunction is the core of disease progression. Evidence shows that kakonein, an isoflavone common in Pueraria, can effectively treat diabetes and its complications. Therefore, we explored whether kakonein protects cardiovascular endothelial function by inhibiting inflammatory responses. In this study, C57BL/6J mice were injected with streptozocin to establish a diabetes model and treated with kakonein or metformin for 7 days. The protective effect of kakonein on cardiovascular endothelial junctions and NLRP3 inflammasome activation was verified through immunofluorescence and ELISA assay. In addition, the regulation of autophagy on the NLRP3 inflammasome was investigated through Western blot, immunofluorescence and RT-qPCR. Results showed that kakonein restored the function of endothelial junctions and inhibited the assembly and activation of the NLRP3 inflammasome. Interestingly, kakonein decreased the expression of NLRP3 inflammasome protein by not reducing the transcriptional levels of NLRP3 and caspase-1. Kakonein activated autophagy in an AMPK-dependent manner, which reduced the activation of the NLRP3 inflammasome. In addition, kakonein inhibited both hyperglycaemia-induced cardiovascular endothelial junction dysfunction and NLRP3 inflammasome activation, similar to autophagy agonist. Our findings indicated that kakonein exerts a protective effect on hyperglycaemia-induced chronic vascular disease by regulating the NLRP3 inflammasome through autophagy.


Assuntos
Angiopatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Isoflavonas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vasodilatadores/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Células Cultivadas , Angiopatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Endotélio Vascular/metabolismo , Inflamassomos/metabolismo , Isoflavonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Vasodilatadores/farmacologia
4.
Invest Ophthalmol Vis Sci ; 61(3): 8, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150250

RESUMO

Purpose: Thymic stromal lymphopoietin (TSLP) is a pro-allergic cytokine that initiates allergic inflammatory reaction between epithelial and dendritic cells (DCs). miR-19b was reported to suppress TSLP expression. The present study aimed to examine miR-19b expression, regulation, and function in allergic conjunctivitis (AC). Methods: A murine model of experimental AC was induced in BALB/c mice by short ragweed pollen. The serum, eye balls, conjunctiva, and cervical lymph nodes (CLN) were used for the study. Gene expression was determined by RT-PCR, whereas protein production and activation were evaluated by immunostaining, ELISA, and Western blotting. Results: In the murine AC model, miR-19b was aberrantly downregulated, whereas the levels of TSLP and p-STAT3, as well as the number of CD11c+ pSTAT3+ DCs were increased. Moreover, Th2 inflammatory cytokine expression was significantly increased. These severe phenotypes could be counteracted by either applying exogenous miR-19b mimic microRNAs or the JAK/STAT inhibitor CYT387. Moreover, overexpression of miR-19b repressed p-STAT3 expression and the number of CD11c+ cells in AC eye and CLN tissues. Conclusions: These findings suggested that miR-19b reduced ocular surface inflammation by inhibiting Stat3 signaling via TSLP downregulation in a murine AC model. Moreover, the present study further demonstrated the clinical potential of applying miR-19b and anti-JAK/STAT therapies in the treatment of AC.


Assuntos
Conjuntivite Alérgica/genética , Janus Quinases/fisiologia , MicroRNAs/genética , Fatores de Transcrição STAT/fisiologia , Animais , Antígenos de Plantas , Antígenos CD11/metabolismo , Vértebras Cervicais , Túnica Conjuntiva/metabolismo , Conjuntivite Alérgica/imunologia , Conjuntivite Alérgica/metabolismo , Córnea/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Janus Quinases/antagonistas & inibidores , Linfonodos/metabolismo , Camundongos Endogâmicos BALB C , MicroRNAs/biossíntese , Fenótipo , Extratos Vegetais , Fatores de Transcrição STAT/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA