Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Ther ; 40(8): 1322-1337, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30078466

RESUMO

Purpose: Red ginseng is one of the world's most popular herbal medicines; it exhibits a wide range of pharmacologic activities and is often co-ingested with other herbal and conventional medicines. This open-label, randomized, 3-period study investigated the in vivo herb-drug interaction potential for red ginseng extract with cytochrome P-450 (CYP) enzymes and organic anion-transporting polypeptide (OATP) 1B1. METHODS: Fifteen healthy male volunteers (22-28 years; 57.1-80.8 kg) were administered a single dose of cocktail probe substrates (caffeine 100 mg, losartan 50 mg, omeprazole 20 mg, dextromethorphan 30 mg, midazolam 2 mg, and pitavastatin 2 mg) and single or multiple doses of red ginseng extract for 15 days. FINDINGS: The pharmacokinetic profiles of the probe substrates and metabolites after single- or multiple-dose administration of red ginseng extracts were comparable to the corresponding profiles of the control group. The geometric mean ratio of AUC0-t and 90% CIs for the probe substrate drugs between the control and multiple doses of red ginseng for 15 days were within 0.8 to 1.25 (CYP2C9, CYP3A4, and OATP1B1 probe substrates) or slightly higher (CYP1A2, CYP2C19, and CYP2D6 probe substrates). Additional assessments of the in vitro drug interaction potential of red ginseng extracts and the ginsenoside Rb1 on drug-metabolizing enzymes and transporters using human liver microsomes, cryopreserved human hepatocytes, and transporter-overexpressed cells were negative. IMPLICATIONS: Red ginseng poses minimal risks for clinically relevant CYP- or OATP-mediated drug interactions and is well tolerated. Clinical Research Information Service registry no.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Panax , Preparações de Plantas/farmacologia , Adulto , Cafeína/metabolismo , Cafeína/farmacocinética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/metabolismo , Dextrometorfano/farmacocinética , Interações Medicamentosas , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Losartan/metabolismo , Losartan/farmacocinética , Masculino , Midazolam/metabolismo , Midazolam/farmacocinética , Omeprazol/metabolismo , Omeprazol/farmacocinética , Distribuição Aleatória , Adulto Jovem
2.
J Med Chem ; 57(5): 1708-29, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24555570

RESUMO

The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.


Assuntos
Antivirais/uso terapêutico , Descoberta de Drogas , Hepatite C/tratamento farmacológico , Isoquinolinas/uso terapêutico , Inibidores de Proteases/uso terapêutico , Sulfonamidas/uso terapêutico , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Isoquinolinas/química , Modelos Moleculares , Inibidores de Proteases/química , Sulfonamidas/química
3.
J Biomol Screen ; 18(9): 1072-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24062352

RESUMO

Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.


Assuntos
Descoberta de Drogas , Drogas em Investigação/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Corantes Fluorescentes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA