Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 39(3): 301-306, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695797

RESUMO

Objective To observe the effects of 630 nm red light and 460 nm blue light emitting diode irradiation on the healing of skin wounds in Japanese big-ear white rabbits. Methods The skin wound model was established with 8 Japanese big-ear white rabbits. Three parts of vulnus in each rabbit were used:two parts of vulnus were irradiated vertically by red and blue LED light,respectively(15 min/time),and the distance between lights and wounds was 15 cm;the 3rd part of the wound was used as a control. On the 21st day of the wounds exposure to light,the number of healing wounds and the percentage of healing area were recorded and the treatment effect of these two light sources was compared. HE staining was used to analyze the newborn tissue structure. Masson staining was used to observe the proliferation of skin collagen fibers. Immuohistochemical staining was used to analyze fibroblast growth factor(FGF),epidermal growth factor(EGF),endothelial growth factor(CD31),proliferating cell nuclear antigen(Ki-67),and inflammatory cytokines(CD68)infiltration in the skin. Results The healing rate in the red light,blue light,and control groups was 50.0%(4/8),25.0%(2/8),and 12.5%(1/8),respectively. Since the 12th day after modeling,the healing area percentage in the red light group was significantly higher than those in the blue light and control groups(P<0.05,P<0.01). On the 21st day after modeling,the skin thickness of the red light group was(2.95±0.34)mm,which was significantly higher than that in control group [(2.52±0.42)mm;F=3.182,P=0.016)]. The average optical density of collagen fibers was 0.15±0.03 in red light group,which was significantly higher than that of the blue light group(0.09±0.01;F=7.316,P=0.012)and control(0.07±0.01;F=7.316,P=0.003). The results of immunohistochemistry showed the expression levels of EGF,FGF,CD31 antigen,and Ki-67 in the red light group were significantly higher than those in the blue light and control groups,whereas the CD68 expression was significantly lower(P<0.05 or P<0.01). Conclusion LED red light irradiation can promote the healing of skin wounds in Japanese big-ear white rabbits,which may be achieved by the effect of red light irradiation in stimulating the proliferation of skin epidermal cells,vascular endothelial cells,and fiberous tissue.


Assuntos
Fototerapia , Pele/efeitos da radiação , Cicatrização , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Luz , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Coelhos
2.
PLoS One ; 11(6): e0157898, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347879

RESUMO

The biological effects of different wavelengths of light emitting diode (LED) light tend to vary from each other. Research into use of photobiomodulation for treatment of skin wounds and the underlying mechanisms has been largely lacking. We explored the histopathological basis of the therapeutic effect of photobiomodulation and the relation between duration of exposure and photobiomodulation effect of different wavelengths of LED in a Japanese big-ear white rabbit skin-wound model. Skin wound model was established in 16 rabbits (three wounds per rabbit: one served as control, the other two wounds were irradiated by red and blue LED lights, respectively). Rabbits were then divided into 2 equal groups based on the duration of exposure to LED lights (15 and 30 min/exposure). The number of wounds that showed healing and the percentage of healed wound area were recorded. Histopathological examination and skin expression levels of fibroblast growth factor (FGF), epidermal growth factor (EGF), endothelial marker (CD31), proliferating cell nuclear antigen (Ki67) and macrophagocyte (CD68) infiltration, and the proliferation of skin collagen fibers was assessed. On days 16 and 17 of irradiation, the healing rates in red (15 min and 30 min) and blue (15 min and 30 min) groups were 50%, 37.5%, 25% and 37.5%, respectively, while the healing rate in the control group was 12.5%. The percentage healed area in the red light groups was significantly higher than those in other groups. Collagen fiber and skin thickness were significantly increased in both red light groups; expression of EGF, FGF, CD31 and Ki67 in the red light groups was significantly higher than those in other groups; the expression of FGF in red (30 min) group was not significantly different from that in the blue light and control groups. The effect of blue light on wound healing was poorer than that of red light. Red light appeared to hasten wound healing by promoting fibrous tissue, epidermal and endothelial cell proliferation. An increase in the exposure time to 30 min did not confer any additional benefit in both red and blue light groups. This study provides a theoretical basis for the potential therapeutic application of LED light in clinical settings.


Assuntos
Fototerapia/métodos , Reepitelização , Pele/lesões , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Fototerapia/instrumentação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Coelhos , Pele/metabolismo , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA