Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 152(5): 1207-1219, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102398

RESUMO

BACKGROUND: Nutritional muscle dystrophy is associated with selenium (Se) deficiency; however, the underlying mechanism remains unclear. OBJECTIVES: This study aimed to understand the crosstalk among redox status, energy metabolism, and inflammation in nutritional muscle dystrophy induced by dietary Se deficiency. METHODS: Eighteen castrated male pigs (Yorkshire, 45 d old) were fed Se-deficient (Se-D; 0.007 mg Se/kg) or Se-adequate (Se-A; in the form of selenomethionine, 0.3 mg Se/kg) diets for 16 wk. The muscle Se concentrations; antioxidant capacity; and gene expression, transcriptome, global proteome, metabolome, and lipidome profiles were analyzed. The transcriptome, metabolome, and proteome profiles were analyzed with biostatistics, bioinformatics, and pathway enrichment analysis; other data were analyzed with Student's 2-sided t tests. RESULTS: The muscle Se content in the Se-D group was 96% lower than that in the Se-A group (P < 0.05). The activity of glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) in the Se-D group was 42%-69% lower than that in the Se-A group (P < 0.05). The mRNA levels of 10 selenoprotein genes were 25%-84% lower than those in the Se-A group (P < 0.05). Multi-omics analyses indicated that the levels of 1378 transcripts, 83 proteins, 22 metabolites, and 55 lipid molecules were significantly altered in response to Se deficiency. Se deficiency-induced redox imbalance led to muscle central carbon and lipid metabolism reprogramming, which enhanced the glycolysis pathway and decreased phospholipid synthesis. Inflammation and apoptosis were observed in response to Se deficiency-induced muscle oxidative stress, which may have been associated with extracellular matrix (ECM) remodeling, suppressed focal adhesion and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, and activation of the NF-κB signaling pathway. CONCLUSIONS: These results contributed to understanding the crosstalk among redox, energy metabolism, and inflammation in Se deficiency-induced muscle dystrophy in pigs, and may provide intervention targets for muscle disease treatment.


Assuntos
Selênio , Animais , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Músculos/metabolismo , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Suínos
2.
Mol Nutr Food Res ; 66(6): e2100644, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932259

RESUMO

SCOPE: Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model is created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS: A total of 24 pigs are divided into two equal groups, which were fed a diet with either 0.007 mg kg-1 Se or 0.3 mg kg-1 Se for 16 weeks. Se deficiency causes cardiac oxidative stress by blocking glutathione and thioredoxin systems and increases thioredoxin domain-containing protein S-nitrosylation. Energy production is disordered, as free fatty acids are overloaded, the tricarboxylic acid cycle is strengthened, and three respiratory chain proteins enhance S-nitrosylation. Excess free fatty acids lead to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and causes an increase in malondialdehyde. Moreover, increased palmitic acid enhances de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiates inflammation via cytosolic DNA-sensing pathways, which activates downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS: The present study identifies a lipid metabolic vulnerability and inflammation initiation pathway via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment.


Assuntos
Selênio , Animais , Ácidos Graxos não Esterificados , Inflamação , Estresse Oxidativo , Suínos , Tiorredoxinas
3.
Animals (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946355

RESUMO

The study was conducted to investigate the effects of replacing antibiotic growth promoters (AGPs) with an egg immunoglobulin (IgY) combined with phytomolecules (PM) on the growth rate, serum immunity, and intestinal health of weaned pigs challenged with Escherichia coli K88 (E. coli K88). A total of 192 piglets were weaned at 28 days old with an average weight of 7.29 (± 0.04) kg. They were randomly divided into four treatments containing eight replicates with six piglets per replicate. The treatment groups were NC and PC fed a basal diet, AGP fed a basal diet supplemented with 75 mg/kg chlortetracycline, 50 mg/kg oxytetracycline calcium, and 40 mg/kg zinc bacitracin, IPM fed a basal diet supplemented with IgY at dose of 2.5 g/kg and 1.0 g/kg and PM at dose of 300 mg/kg and 150 mg/kg during days 1 to 17 and 18 to 42, respectively. On days 7 to 9 of the experiment, piglets in the PC, AGP, and IPM groups were orally challenged with 20 mL E. coli K88 (109 CFU/mL), while piglets in the NC group were challenged with 20 mL medium without E. coli K88. The E. coli K88 challenge model was successful as the incidence of post-weaning diarrhea (PWD) of piglets challenged with E. coli K88 was significantly higher than that of those unchallenged piglets during the challenge time (days 7 to 9) and days 1 to 7 of post-challenge (p < 0.05). A diet with combinations of IgY and PM and AGPs significantly decreased the incidence of PWD during the challenge time and days 1 to 7 of post-challenge (p < 0.05) compared to the PC group and significantly improved the ratio of feed to weight gain (F:G) during days 1 to 17 of the experiment compared to the NC and PC groups (p < 0.05). In comparison with the PC group, piglets in the IPM group had significantly higher serum levels of IgA, IgG, and IgM (p < 0.05), but lower serum IL-1ß on day 17 of experiement (p < 0.05). Besides, diet supplementation with AGP significantly decreased serum IL-1ß, IL-6, and TNF-α on days 17 and 42 (p < 0.05) with comparison to the PC group. Piglets in the IPM group showed a significantly lower level of fecal coliforms (p < 0.05), but a higher villus height of jejunum and ileum and higher ratio of villus height to crypt depth of duodenum and jejunum (p < 0.05) than those piglets in the PC group. In summary, diet supplementation with a mixture of IgY and PM decreased the incidence of PWD and coliforms, increased feed conversion ratio, and improved intestinal histology and immune function.

4.
Front Microbiol ; 11: 588666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363521

RESUMO

Inflammatory bowel disorder is accompanied by the destruction of immunity homeostasis, gut microbiota perturbation, and chronic inflammatory liver diseases. Butyrate is known as a primary energy source for colonocytes and functional substances for mitigating pathological features of colitis. However, it is still unclear whether butyrate alleviates colitis progression by regulation of microbiota and metabolism in the gut-liver axis. In the present study, we aimed to determine the role of microbiota and metabolism of the gut-liver axis in ameliorating lipopolysaccharide (LPS)-induced colitis in piglets using protected butyrate administration. Eighteen crossbred male piglets were weaned at 30 days old and were randomly allocated to three treatments, with CON (basal diet), LPS (basal diet + LPS), and BT-LPS (basal diet + 3.0 g/kg protected butyrate + LPS). On days 19 and 21, piglets in the LPS and BT-LPS groups were intraperitoneally challenged with LPS at 100 µg/kg body weight. Butyrate administration significantly decreased LPS-induced rise in the clinical score of piglets and colonic histological scores and reduced the susceptibility to LPS-induced severe inflammatory response by decreasing proinflammatory (IL-1ß, IL-6, IL-8, and TNF-α) cytokines. Butyrate supplementation accelerated the prevalence of Faecalibacterium and Lactobacillus by enhancing the tricarboxylic acid (TCA) cycle of colonocytes. Dietary supplementation with protected butyrate significantly targeted increased concentrations of butyric acid in the colon and portal venous circulation, and enhanced the TCA cycle in the gut-liver axis by mobilizing amino acid and vitamin B group as a coenzyme. Meanwhile, during this progress, LPS increased fatty acid synthesis that was reversed by butyrate treatment, which was reflected by decreased acylcarnitines. Butyrate-reshaped colonic microbial community and metabolism in the gut-liver axis contributed to morphology integrity and immunity homeostasis by promoting anti-inflammatory (IL-10 and TGF-ß) cytokines and suppressing inflammatory mediator hypoxia-inducible factor 1α and its downstream response elements cyclooxygenase 2 and inducible nitric oxide synthase. These results identified the pivotal role of colonic microbiota and metabolism in the gut-liver axis for alleviating inflammatory progression and possible therapeutic targets.

5.
Redox Biol ; 36: 101519, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531544

RESUMO

Selenium (Se) intake disequilibrium is associated with many human diseases (e.g., Keshan disease and type 2 diabetes). To understand the mechanism of Se deficiency-induced hepatic pathogenesis, a pure line pig model was established by feeding a diet with either 0.07 mg/kg Se or 0.3 mg/kg Se for 16 weeks. The hepatic metabolome, lipidome, global proteome, and whole transcriptome were analyzed. Se deficiency causes a redox imbalance via regulation of selenoproteins at both the mRNA and protein level, and blocks the glutathione anti-oxidant system along with enhanced glutathione synthesis and catabolism. The Warburg effect was observed by enhanced activation of the glycolysis and phosphate pentose pathways. The tricarboxylic acid cycle was dysfunctional since the preliminary metabolites decreased and shifted from using glycolysis origin substrates to a glutamine catabolism-preferred metabolic mode. The reprogrammed central carbon metabolism induced widely restrained lipid synthesis. In addition, a Se deficiency initiated inflammation by activating the NF-κB pathway through multiple mechanisms. These results identified the potential metabolic vulnerability of the liver in response to a Se deficiency-induced redox imbalance and possible therapeutic or intervention targets.


Assuntos
Diabetes Mellitus Tipo 2 , Selênio , Animais , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Oxirredução , Selênio/metabolismo , Suínos
6.
J Nutr ; 150(4): 704-711, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060554

RESUMO

BACKGROUND: The association between high selenium (Se) intake and metabolic disorders such as type 2 diabetes has raised great concern, but the underlying mechanism remains unclear. OBJECTIVE: Through targeted metabolomics analysis, we examined the liver sugar and acylcarnitine metabolism responses to supranutritional selenomethionine (SeMet) supplementation in pigs. METHODS: Thirty-six castrated male pigs (Duroc-Landrace-Yorkshire, 62.0 ± 3.3 kg) were fed SeMet adequate (Se-A, 0.25 mg Se/kg) or SeMet supranutritional (Se-S, 2.5 mg Se/kg) diets for 60 d. The Se concentration, biochemical, gene expression, enzyme activity, and energy-targeted metabolite profiles were analyzed. RESULTS: The Se-S group had greater fasting serum concentrations of glucose (1.9-fold), insulin (1.4-fold), and free fatty acids (FFAs,1.3-fold) relative to the Se-A group (P < 0.05). The liver total Se concentration was 4.2-fold that of the Se-A group in the Se-S group (P < 0.05), but expression of most selenoprotein genes and selenoenzyme activity did not differ between the 2 groups. Seven of 27 targeted sugar metabolites and 4 of 21 acylcarnitine metabolites significantly changed in response to high SeMet (P < 0.05). High SeMet supplementation significantly upregulated phosphoenolpyruvate carboxy kinase (PEPCK) activity by 64.4% and decreased hexokinase and succinate dehydrogenase (SDH) activity by 46.5-56.7% (P < 0.05). The relative contents of glucose, dihydroxyacetone phosphate, α-ketoglutarate, fumarate, malate, erythrose-4-phosphate, and sedoheptulose-7-phosphate in the Se-S group were 21.1-360% greater than those in the Se-A group (P < 0.05). The expression of fatty acid synthase (FASN) and the relative contents of carnitine, hexanoyl-carnitine, decanoyl-carnitine, and tetradecanoyl-carnitine in the Se-S group were 35-97% higher than those in the Se-A group (P < 0.05). CONCLUSIONS: Dietary high SeMet-induced hyperglycemia and hyperinsulinemia were associated with suppression of sugar metabolism and elevation of lipid synthesis in pig livers. Our research provides novel insights into high SeMet intake-induced type 2 diabetes.


Assuntos
Carnitina/análogos & derivados , Dieta , Fígado/metabolismo , Selenometionina/administração & dosagem , Açúcares/metabolismo , Animais , Carnitina/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Hiperglicemia/induzido quimicamente , Hiperinsulinismo/induzido quimicamente , Lipídeos/biossíntese , Fígado/química , Fígado/enzimologia , Masculino , Metabolômica/métodos , Modelos Animais , Oxirredução , RNA Mensageiro/análise , Selênio/administração & dosagem , Selênio/efeitos adversos , Selênio/análise , Selenometionina/efeitos adversos , Selenoproteínas/genética , Sus scrofa
7.
Biol Trace Elem Res ; 196(2): 463-471, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31664683

RESUMO

Se-methylselenocysteine (MeSeCys) is a natural organic selenium (Se) supplement. However, its effects on animal nutrition are poorly understood. This study compared the effects of sodium selenite (SeNa), MeSeCys, and selenomethionine (SeMet) on immune function, tissue Se concentration, meat quality, and selenoprotein gene expression in pigs. A total of 72 finishing pigs were divided into four groups, which received a basal diet (BD, 0.1 mg Se/kg) without Se supplementation or one supplemented with SeNa, MeSeCys, or SeMet at a concentration of 0.25 mg Se/kg. Organic Se supplementation significantly increased the immune globulin A (IgA), IgG, and IgM serum levels compared with BD and SeNa groups (P < 0.05). There were no statistically significant differences in growth performance among the four groups. SeMet was more efficient in increasing Se concentrations in the heart, muscle, and liver than MeSeCys and SeNa (P < 0.05), while no statistically significant differences were observed between MeSeCys and SeNa. Se supplementation significantly decreased the pressing muscle loss compared with the BD group (P < 0.05). Meat color and pH were not significantly affected. Se supplement effects on liver selenoprotein gene mRNA level enhancement were ranked as follows: MeSeCys > SeMet > SeNa (P < 0.05). In muscle tissues, only the SELENOW mRNA level was significantly increased by the MeSeCys and SeMet treatment, compared with the SeNa group. In conclusion, SeMet was more efficient in increasing Se concentrations than MeSeCys and SeNa in pigs, while MeSeCys was more efficient in enhancing selenoprotein gene expression than SeMet and SeNa.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Carne/análise , Selênio/farmacologia , Selenoproteínas/genética , Animais , Suplementos Nutricionais , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Selênio/administração & dosagem , Selênio/análise , Suínos , Distribuição Tecidual
8.
Food Chem ; 302: 125371, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437711

RESUMO

Dietary selenium deficiency is recognized as a global problem. Pork is the most widely consumed meat throughout the world and an important source of selenium for humans. In this study, a reliable approach was developed for analyzing selenium and its speciation in the muscles of pigs after different selenium treatments. The selenium source deposition efficiency was ranked as: selenomethionine > methylselenocysteine > selenite, and the muscle selenium content had a dose effect with selenomethionine supplementation. In total, four species of selenium were detected in the muscles of pigs and the distributions of these selenium species were greatly affected by the dietary selenium supplementation forms and levels. Selenomethionine (>70% of total selenium) and selenocystine (>11%) were the major selenium species, followed by methylselenocysteine and selenourea. Therefore, selenium-enriched pork produced from selenomethionine is a good source for improving human dietary selenium intake.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Músculo Esquelético/química , Compostos de Selênio/farmacologia , Selênio/análise , Animais , Cistina/análogos & derivados , Cistina/análise , Suplementos Nutricionais , Análise de Alimentos/métodos , Masculino , Músculo Esquelético/efeitos dos fármacos , Compostos Organosselênicos/análise , Reprodutibilidade dos Testes , Ácido Selenioso/farmacologia , Compostos de Selênio/análise , Selenocisteína/análogos & derivados , Selenocisteína/farmacologia , Selenometionina/análise , Selenometionina/farmacologia , Suínos , Ureia/análogos & derivados , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA