Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167280, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742950

RESUMO

To highlight how biochar affects the interaction between inorganic nitrogen species (ammonium nitrogen, nitrate nitrogen, and nitrite nitrogen: NH4+-N, NO3¯-N, and NO2¯-N) and phosphorus species (calcium phosphate, iron phosphate, and aluminum phosphate: CaP, FeP and AlP) in soil and plant uptake of these nutrients, walnut shell (WS)- and corn cob (CC)-derived biochars (0.5 %, 1 %, 2 %, and 4 %, w/w) were added to a weakly alkaline soil, and then Chinese cabbages were planted. The results showed that the changes in soil inorganic nitrogen were related to biochar feedstock, pyrolysis temperature, and application rate. For soil under the active nitrification condition (dominant NO3¯-N), a significant decrease in the NH4+-N/NO3¯-N ratio after biochar addition indicates enhanced nitrification (excluding WS-derived biochars at 2 % and 4 %), which can be explained by the most positive response of ammonia-oxidizing archaeal amoA to biochar addition. The CC-derived biochar more effectively enhanced soil nitrification than WS-derived biochar did. The addition of 4 % of biochars significantly increased soil inorganic phosphorus, and the addition of CC-derived biochars more effectively increased Ca2P than WS-derived biochars. Biochars significantly decreased plant uptake of phosphorus, while generally had little influence on plant uptake of nitrogen. Interestingly, NO2¯-N in soil significantly positively correlated with total phosphorus in both soil and plant, and significantly negatively correlated with phoC, indicating that a certain degree of NO2¯-N accumulation in soil slightly facilitated plant uptake of phosphorus but inhibited phoC-harboring bacteria. The NO3¯-N in soil significantly positively correlated with Ca2P and Ca8P, while the NH4+-N/NO3¯-N ratio significantly negatively correlated with Ca10P and FeP, indicating that the enhanced nitrification seemed to facilitate the change in phosphorus to readly available ones. This study will help determine how to scientifically and rationally use biochar to regulate inorganic nitrogen and phosphorus species in soil and plant uptake of these nutrients.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Fósforo , Nitrogênio/análise , Dióxido de Nitrogênio , Carvão Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA