RESUMO
Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability. Materials and Methods Free-induction decay MRSI was performed at 7.0 T. Participants with MS and age- and sex-matched healthy controls were recruited prospectively between January 2016 and December 2017. Metabolic ratios were obtained in white matter lesions, NAWM, and CGM regions. Subgroup analysis for MS-related disability based on Expanded Disability Status Scale (EDSS) scores was performed using analysis of covariance. Partial correlations were applied to explore associations between metabolic ratios and disability. Results Sixty-five participants with MS (mean age ± standard deviation, 34 years ± 9; 34 women) and 20 age- and sex-matched healthy controls (mean age, 32 years ± 7; 11 women) were evaluated. Higher signal intensity of myo-inositol (mI) with and without reduced signal intensity of N-acetylaspartate (NAA) was visible on metabolic images in the NAWM of participants with MS. A higher ratio of mI to total creatine (tCr) was observed in the NAWM of the centrum semiovale of all MS subgroups, including participants without disability (marginal mean ± standard error, healthy controls: 0.78 ± 0.04; EDSS 0-1: 0.86 ± 0.03 [P = .02]; EDSS 1.5-3: 0.95 ± 0.04 [P < .001]; EDSS ≥3.5: 0.94 ± 0.04 [P = .001]). A lower ratio of NAA to tCr was found in MS subgroups with disabilities, both in their NAWM (marginal mean ± standard error, healthy controls: 1.46 ± 0.04; EDSS 1.5-3: 1.33 ± 0.03 [P = .03]; EDSS ≥3.5: 1.30 ± 0.04 [P = .01]) and CGM (marginal mean ± standard error, healthy controls: 1.42 ± 0.05; EDSS ≥3.5: 1.23 ± 0.05 [P = .006]). mI/NAA correlated with EDSS (NAWM of centrum semiovale: r = 0.47, P < .001; parietal NAWM: r = 0.43, P = .002; frontal NAWM: r = 0.34, P = .01; frontal CGM: r = 0.37, P = .004). Conclusion MR spectroscopic imaging at 7.0 T allowed in vivo visualization of multiple sclerosis pathologic findings not visible at T1- or T2-weighted MRI. Metabolic abnormalities in the normal-appearing white matter and cortical gray matter were associated with disability. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Barker in this issue.
Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/patologia , Creatina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Substância Branca/patologiaRESUMO
Purpose To compare the involuntary head motion, frequency and B0 shim changes, and effects on data quality during real-time-corrected three-dimensional γ-aminobutyric acid-edited magnetic resonance (MR) spectroscopic imaging in subjects with mild cognitive impairment (MCI), patients with Parkinson disease (PD), and young and older healthy volunteers. Materials and Methods In this prospective study, MR spectroscopic imaging datasets were acquired at 3 T after written informed consent was obtained. Translational and rotational head movement, frequency, and B0 shim were determined with an integrated volumetric navigator. Head motion patterns and imager instability were investigated in 33 young healthy control subjects (mean age ± standard deviation, 31 years ± 5), 34 older healthy control subjects (mean age, 67 years ± 8), 34 subjects with MCI (mean age, 72 years ± 5), and 44 patients with PD (mean age, 64 years ± 8). Spectral quality was assessed by means of region-of-interest analysis. Group differences were evaluated with Bonferroni-corrected Mann-Whitney tests. Results Three patients with PD and four subjects with MCI were excluded because of excessive head motion (ie, > 0.8 mm translation per repetition time of 1.6 seconds throughout >10 minutes). Older control subjects, patients with PD, and subjects with MCI demonstrated 1.5, 2, and 2.5 times stronger head movement, respectively, than did young control subjects (1.79 mm ± 0.77) (P < .001). Of young control subjects, older control subjects, patients with PD, and subjects with MCI, 6%, 35%, 38%, and 51%, respectively, moved more than 3 mm during the MR spectroscopic imaging acquisition of approximately 20 minutes. The predominant movements were head nodding and "sliding out" of the imager. Frequency changes were 1.1- and 1.4-fold higher in patients with PD (P = .007) and subjects with MCI (P < .001), respectively, and B0 shim changes were 1.3-, 1.5-, and 1.9-fold higher in older control subjects (P = .005), patients with PD (P < .001), and patients with MCI (P < .001), respectively, compared with those of young control subjects (12.59 Hz ± 2.49, 3.61 Hz · cm-1 ± 1.25). Real-time correction provided high spectral quality in all four groups (signal-to-noise ratio >15, Cramér-Rao lower bounds < 20%). Conclusion Real-time motion and B0 monitoring provides valuable information about motion patterns and B0 field variations in subjects with different predispositions for head movement. Immediate correction improves data quality, particularly in patients who have difficulty avoiding movement. © RSNA, 2017 Online supplemental material is available for this article.
Assuntos
Artefatos , Disfunção Cognitiva/patologia , Movimentos da Cabeça/fisiologia , Doença de Parkinson/patologia , Idoso , Meios de Contraste , Falha de Equipamento , Feminino , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/normas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Movimento , Estudos Prospectivos , Ácido gama-AminobutíricoRESUMO
Ultrahigh-field, whole-body MR systems increase the signal-to-noise ratio (SNR) and improve the spectral resolution. Sequences with a short TE allow fast signal acquisition with low signal loss as a result of spin-spin relaxation. This is of particular importance in the liver for the precise quantification of the hepatocellular content of lipids (HCL). In this study, we introduce a spoiler Gradient-switching Ultrashort STimulated Echo AcqUisition (GUSTEAU) sequence, which is a modified version of a stimulated echo acquisition mode (STEAM) sequence, with a minimum TE of 6 ms. With the high spectral resolution at 7 T, the efficient elimination of water sidebands and the post-processing suppression of the water signal, we estimated the composition of fatty acids (FAs) via the detection of the olefinic lipid resonance and calculated the unsaturation index (UI) of hepatic FAs. The performance of the GUSTEAU sequence for the assessment of UI was validated against oil samples and provided excellent results in agreement with the data reported in the literature. When measuring HCL with GUSTEAU in 10 healthy volunteers, there was a high correlation between the results obtained at 7 and 3 T (R(2) = 0.961). The test-retest measurements yielded low coefficients of variation for HCL (4 ± 3%) and UI (11 ± 8%) when measured with the GUSTEAU sequence at 7 T. A negative correlation was found between UI and HCL (n = 10; p < 0.033). The ultrashort TE MRS sequence (GUSTEAU; TE = 6 ms) provided high repeatability for the assessment of HCL. The improved spectral resolution at 7 T with the elimination of water sidebands and the offline water subtraction also enabled an assessment of the unsaturation of FAs. This all highlights the potential use of this MRS acquisition scheme for studies of hepatic lipid composition in vivo.