Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 447: 139080, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520904

RESUMO

Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/química , Chá/química , Metabolômica/métodos , Catequina/análise , Odorantes/análise , Folhas de Planta/química
2.
Food Res Int ; 169: 112839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254414

RESUMO

Carotenoid-derived volatiles are important contributors to tea aroma quality. However, the profile of the carotenoid pathway and carotenoid-derived volatiles (CDVs) artificial regulation in oolong tea processing has yet to be investigated. In the present work, the content and varieties of carotenoid-derived volatiles, the genome-wide identification of carotenoid cleavage dioxygenase (CsCCD) gene family, the expression level of CsCCD and other key genes in the carotenoid pathway, and the profile of carotenoid substances were analyzed by multi-omics and bioinformatics methods with innovative postharvest supplementary LED light during oolong tea processing. The results showed that during oolong tea processing, a total of 17 CDVs were identified. The content of ß-ionone increased up to 26.07 times that of fresh leaves and its formation was significantly promoted with supplementary LED light from 0.54 µg/g to 0.83 µg/g in the third turning over treatment. A total of 11 CsCCD gene family members were identified and 119 light response cis-acting regulatory elements of CsCCD were found. However, the expression level of most genes in the carotenoid pathway including CsCCD were reduced due to mechanical stress. 'Huangdan' fresh tea leaves had a total of 1 430.46 µg/g 22 varieties of carotenoids, which mainly composed of lutein(78.10%), ß-carotene(8.24%) and zeaxanthin(8.18%). With supplementary LED light, the content of antherxanthin and zeaxanthin in xanthophyll cycle was regulated and CDVs such as α-ionone, ß-ionone, pseudoionone, damascenone, 6,10-dimethyl-5,9-undecadien-2-one, citral, geranyl acetate and α-farnesene were promoted significantly in different phases during oolong tea processing. Our results revealed the profile of the carotenoid metabolism pathway in oolong tea processing from the perspective of precursors, gene expression and products, and put forward an innovative way to improve CDVs by postharvest supplementary LED light.


Assuntos
Carotenoides , Redes e Vias Metabólicas , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Chá
3.
PeerJ ; 11: e14869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785711

RESUMO

Sugar metabolites not only act as the key compounds in tea plant response to stress but are also critical for tea quality formation during the post-harvest processing of tea leaves. However, the mechanisms by which sugar metabolites in post-harvest tea leaves respond to mechanical stress are unclear. In this study, we aimed to investigate the effects of mechanical stress on saccharide metabolites and related post-harvest tea genes. Withered (C15) and mechanically-stressed (V15) for 15 min Oolong tea leaves were used for metabolome and transcriptome sequencing analyses. We identified a total of 19 sugar metabolites, most of which increased in C15 and V15. A total of 69 genes related to sugar metabolism were identified using transcriptome analysis, most of which were down-regulated in C15 and V15. To further understand the relationship between the down-regulated genes and sugar metabolites, we analyzed the sucrose and starch, galactose, and glycolysis metabolic pathways, and found that several key genes of invertase (INV), α-amylase (AMY), ß-amylase (BMY), aldose 1-epimerase (AEP), and α-galactosidase (AGAL) were down-regulated. This inhibited the hydrolysis of sugars and might have contributed to the enrichment of galactose and D-mannose in V15. Additionally, galactinol synthase (Gols), raffinose synthase (RS), hexokinase (HXK), 6-phosphofructokinase 1 (PFK-1), and pyruvate kinase (PK) genes were significantly upregulated in V15, promoting the accumulation of D-fructose-6-phosphate (D-Fru-6P), D-glucose-6-phosphate (D-glu-6P), and D-glucose. Transcriptome and metabolome association analysis showed that the glycolysis pathway was enhanced and the hydrolysis rate of sugars related to hemicellulose synthesis slowed in response to mechanical stress. In this study, we explored the role of sugar in the response of post-harvest tea leaves to mechanical stress by analyzing differences in the expression of sugar metabolites and related genes. Our results improve the understanding of post-harvest tea's resistance to mechanical stress and the associated mechanism of sugar metabolism. The resulting treatment may be used to control the quality of Oolong tea.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Transcriptoma/genética , Galactose/metabolismo , Estresse Mecânico , Perfilação da Expressão Gênica , Chá/metabolismo , Açúcares/metabolismo
4.
BMC Plant Biol ; 20(1): 98, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131737

RESUMO

BACKGROUND: Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS: In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS: Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Transcriptoma , Camellia sinensis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/genética
5.
Biomolecules ; 10(2)2020 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079100

RESUMO

Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Tricomas/metabolismo , Camellia sinensis/genética , Catequina/genética , Catequina/metabolismo , Flavonoides/química , Flavonoides/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Chá , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Tricomas/química , Tricomas/genética
6.
Molecules ; 24(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109117

RESUMO

White tea (WT) is one of six tea types originally derived from Fujian Province, China. White tea is known for its health-promoting properties. However, the neuroprotective and anti-aggregatory properties of WT against the hallmark toxic Alzheimer's protein, Aß have not been investigated. In this study, WT, green tea (GT), oolong tea (OT) and black tea (BT) were manufactured using tea leaves from the cultivar Camellia sinensis (Jin Guanyin). The protective effects of these tea extracts were then studied under oxidative stress conditions via t-bhp and H2O2 exposure, in addition to Aß treatment using a PC-12 cell model. Each tea type failed to rescue PC-12 cells from either t-bhp or H2O2-mediated toxicity, however each extract exerted significant protection against Aß-evoked neurotoxicity. Results of the Thioflavin T Kinetic (ThT) and TEM assay showed that Aß aggregate formation was inhibited by each tea type. Additionally, TEM also supported the different anti-aggregatory effect of WT by modifying Aß into an amorphous and punctate aggregate morphology. Higher accumulated precedent or potential neuroprotective compounds in WT, including ECG''3Me, 8-C-ascorbyl-EGCG, GABA and Gln, in addition to flavonol or flavone glycosides detected by using UPLC-QTOF-MS and UPLC-QqQ-MS, may contribute to a favourable anti-aggregative and neuroprotective effect of WT against Aß.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Chá/química , Camellia sinensis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Peróxido de Hidrogênio/química , Cinética , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Análise de Componente Principal/métodos , Espectrometria de Massas em Tandem/métodos , Chá/parasitologia
7.
Planta ; 250(1): 281-298, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025197

RESUMO

MAIN CONCLUSION: The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.


Assuntos
Camellia sinensis/enzimologia , Regulação da Expressão Gênica de Plantas , alfa-Amilases/metabolismo , beta-Amilase/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Secas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , alfa-Amilases/genética , beta-Amilase/genética
8.
J Oleo Sci ; 64(6): 645-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25891116

RESUMO

The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.


Assuntos
Jasminum/química , Extração Líquido-Líquido/métodos , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Monoterpenos Acíclicos , Compostos de Benzil/análise , Monoterpenos/análise , Óleos Voláteis/química , Óleos de Plantas/química , Solventes , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA