Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212283

RESUMO

Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signaling is critical in GIP-based therapeutics' ability to lower body weight, but pathways leveraged by GIPR pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC) - brain regions critical to the control of energy balance. Hypothalamic Gipr expression was not necessary for the synergistic effect of GIPR/GLP-1R coagonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (GIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to distal brain regions and were transcriptomically distinct. Peripherally dosed fluorescent GIPRAs revealed that access was restricted to circumventricular organs in the CNS. These data demonstrate that Gipr neurons in the hypothalamus, AP, and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility, and appetite-controlling mechanisms. These results highlight the heterogeneity of the central GIPR signaling axis and suggest that studies into the effects of GIP pharmacology on feeding behavior should consider the interplay of multiple regulatory pathways.


Assuntos
Hipotálamo , Receptores dos Hormônios Gastrointestinais , Peso Corporal , Tronco Encefálico/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Comportamento Alimentar , Animais
2.
Am J Physiol Endocrinol Metab ; 324(5): E449-E460, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074989

RESUMO

G protein-coupled receptor (GPR) 120 is expressed in enteroendocrine cells secreting glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP), and cholecystokinin (CCK). Although GPR120 signaling in adipose tissue and macrophages has been reported to ameliorate obesity and insulin resistance in a high long-chain triglyceride (LCT) diet, intestine-specific roles of GPR120 are unclear. To clarify the metabolic effect of GPR120 in the intestine, we generated intestine-specific GPR120-knockout (GPR120int-/-) mice. In comparison with floxed GPR120 (WT) mice, GPR120int-/- mice exhibited reduced GIP secretion and CCK action without change of insulin, GLP-1, or peptide YY (PYY) secretion after a single administration of LCT. Under a high-LCT diet, GPR120int-/- mice showed a mild reduction of body weight and substantial amelioration of insulin resistance and fatty liver. Moreover, liver and white adipose tissue (WAT) of GPR120int-/-mice exhibited increased Akt phosphorylation and reduced gene expression of suppressor of cytokine signaling (SOCS) 3, which inhibits insulin signaling. In addition, gene expression of inflammatory cytokines in WAT and lipogenic molecules in liver were reduced in GPR120int-/- mice. These findings suggest that inhibition of GPR120 signaling in intestine ameliorates insulin resistance and fatty liver under high-LCT diet feeding.NEW & NOTEWORTHY We generated novel intestine-specific GPR120-knockout (GPR120int-/-) mice and investigated the metabolic effect of GPR120 in the intestine. GPR120int-/- mice exhibited a reduction of GIP secretion and CCK action after a single administration of LCT. Under a high-LCT diet, GPR120int-/- mice showed mild improvement in obesity and marked amelioration of insulin resistance and hepatic steatosis. Our results indicate an important role of intestinal GPR120 on insulin resistance and hepatic steatosis.


Assuntos
Dieta Hiperlipídica , Intestinos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Intestinos/metabolismo , Resistência à Insulina , Triglicerídeos/administração & dosagem , Fígado Gorduroso/metabolismo , Camundongos Knockout , Glucose/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/metabolismo , Óleo de Milho/administração & dosagem
3.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G617-G626, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533304

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin secreted from enteroendocrine preproglucagon (PPG)-expressing cells (traditionally known as L cells) in response to luminal nutrients that potentiates insulin secretion. Augmentation of endogenous GLP-1 secretion might well represent a novel therapeutic target for diabetes treatment in addition to the incretin-associated drugs currently in use. In this study, we found that PPG cells substantially express carbonic anhydrase 8 (CAR8), which has been reported to inhibit inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor and subsequent Ca2+ efflux from the endoplasmic reticulum in neuronal cells. In vitro experiments using STC-1 cells demonstrated that Car8 knockdown increases long-chain fatty acid (LCFA)-stimulated GLP-1 secretion. This effect was reduced in the presence of phospholipase C (PLC) inhibitor; in addition, Car8 knockdown increased the intracellular Ca2+ elevation caused by α-linolenic acid, indicating that CAR8 exerts its effect on GLP-1 secretion via the PLC/IP3/Ca2+ pathway. Car8wdl null mutant mice showed significant increase in GLP-1 response to oral corn oil administration compared with that in wild-type littermates, with no significant change in intestinal GLP-1 content. These results demonstrate that CAR8 negatively regulates GLP-1 secretion from PPG cells in response to LCFAs, suggesting the possibility of augmentation of postprandial GLP-1 secretion by CAR8 inhibition.NEW & NOTEWORTHY This study focused on the physiological significance of carbonic anhydrase 8 (CAR8) in GLP-1 secretion from enteroendocrine preproglucagon (PPG)-expressing cells. We found an inhibitory role of CAR8 in LCFA-induced GLP-1 secretion in vitro and in vivo, suggesting a novel therapeutic approach to diabetes and obesity through augmentation of postprandial GLP-1 secretion by CAR8 inhibition.


Assuntos
Biomarcadores Tumorais/metabolismo , Óleo de Milho/farmacologia , Células Enteroendócrinas/efeitos dos fármacos , Ácidos Graxos/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Biomarcadores Tumorais/genética , Sinalização do Cálcio , Linhagem Celular , Células Enteroendócrinas/enzimologia , Glucagon/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Via Secretória , Fosfolipases Tipo C/metabolismo
5.
J Bone Miner Res ; 35(7): 1363-1374, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155286

RESUMO

The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos , Polipeptídeo Inibidor Gástrico , Animais , Osso e Ossos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
6.
J Diabetes Investig ; 10(6): 1430-1437, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31002464

RESUMO

AIMS/INTRODUCTION: Incretin hormone glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP) plays a key role in high-fat diet-induced obesity and insulin resistance. GIP is strongly secreted from enteroendocrine K cells by oil ingestion. G protein-coupled receptor (GPR)120 and GPR40 are two major receptors for long chain fatty acids, and are expressed in enteroendocrine K cells. In the present study, we investigated the effect of the two receptors on oil-induced GIP secretion using GPR120- and GPR40-double knockout (DKO) mice. MATERIALS AND METHODS: Global knockout mice of GPR120 and GPR40 were crossbred to generate DKO mice. Oral glucose tolerance test and oral corn oil tolerance test were carried out. For analysis of the number of K cells and gene expression in K cells, DKO mice were crossbred with GIP-green fluorescent protein knock-in mice in which visualization and isolation of K cells can be achieved. RESULTS: Double knockout mice showed normal glucose-induced GIP secretion, but no GIP secretion by oil. We then investigated the number of K cells and gene characteristics in K cells isolated from GIP-green fluorescent protein knock-in mice. Deficiency of both receptors did not affect the number of K cells in the small intestine or expression of GIP messenger ribonucleic acid in K cells. Furthermore, there was no significant difference in the expression of the genes associated with lipid absorption or GIP secretion in K cells between wild-type and DKO mice. CONCLUSIONS: Oil-induced GIP secretion is triggered by the two major fatty acid receptors, GPR120 and GPR40, without changing K-cell number or K-cell characteristics.


Assuntos
Óleo de Milho/farmacologia , Ácidos Graxos/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Polipeptídeo Inibidor Gástrico/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Endocrinology ; 158(5): 1172-1180, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324023

RESUMO

Free fatty acid receptors GPR120 and GPR40 are involved in the secretion of gut hormones. GPR120 and GPR40 are expressed in enteroendocrine K cells, and their activation induces the secretion of the incretin glucose-dependent insulinotropic polypeptide (GIP). However, the role of these receptors in fat-induced GIP secretion in vivo and the associated mechanisms are unclear. In this study, we investigated corn oil-induced GIP secretion in GPR120-knockout (GPR120-/-) and GPR40-knockout (GPR40-/-) mice. Oil-induced GIP secretion was reduced by 50% and 80% in GPR120-/- and GPR40-/- mice, respectively, compared with wild-type mice. This was not associated with a significant difference in K-cell number or GIP content in K cells, nor messenger RNA levels of the lipid receptor GPR119, nor bile acid receptors TGR5 and farnesoid X receptor. GPR120-/- and GPR40-/- mice also exhibited substantially decreased levels of cholecystokinin (CCK), a hormone from I cells that promotes bile and pancreatic lipase secretion, and this decrease was associated with impaired gallbladder contraction. Notably, treatment with a CCK analog resulted in recovery of oil-induced GIP secretion in GPR120-/- mice but not in GPR40-/- mice. These results indicate that corn oil-induced GIP secretion from K cells involves both GPR120 and GPR40 signaling pathways, and GPR120-induced GIP secretion is indirectly mediated by CCK.


Assuntos
Colecistocinina/metabolismo , Óleo de Milho/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Gorduras na Dieta/farmacologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
J Diabetes Investig ; 6(3): 302-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25969715

RESUMO

AIMS/INTRODUCTION: A dietary supplementation product enriched with glutamine, dietary fiber and oligosaccharide (GFO) is widely applied for enteral nutrition support in Japan. The aim of the present study was to evaluate the effects of GFO ingestion on secretion of incretins, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2). MATERIALS AND METHODS: We carried out a cross-over study involving 20 healthy Japanese volunteers. The participants received GFO or 17 g of glucose, the equivalent carbohydrate in GFO as the control. Plasma glucose, serum insulin, and plasma total GIP, total GLP-1 and total GLP-2 levels during GFO or glucose loading were determined. RESULTS: GFO loading produced significantly higher plasma GLP-1 levels at 30 min and 60 min, area under the curve-GLP-1 value, and area under the curve-GLP-2 value after administration compared with those by glucose loading. In contrast, plasma GIP levels at both 30 and 60 min, and area under the curve-GIP value after glucose loading were significantly higher than those after GFO loading. CONCLUSIONS: These results show that GFO ingestion stimulates GLP-1 and GLP-2 secretion, and reduces GIP secretion compared with glucose ingestion. Therefore, GFO could have an intestinotrophic effect as well as an ameliorating effect on metabolic disorders through modification of release of gut hormones.

9.
Nutrition ; 29(3): 549-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274091

RESUMO

OBJECTIVE: Ulcerative colitis is a chronic recurrent disease characterized by acute inflammation of the colonic mucosa. In Japan, a dietary supplementation product enriched with glutamine, dietary fiber, and oligosaccharide (GFO) is widely applied for enteral nutrition support. These three components have been suggested to improve intestinal health. In this study, we investigated whether GFO has suppressive effects on mucosal damage in ulcerative colitis in an experimental mouse model. METHODS: C57BL/6 mice received 2.5% dextran sulfate sodium in drinking water for 5 d to induce colitis. Then, they were given 0.25 mL of GFO or a 20% glucose solution twice daily for 10 d. Another set of mice receiving unaltered drinking water was used as the normal control group. RESULTS: The body weight loss and disease activity index were significantly lower in the GFO-treated mice compared with the glucose-treated mice (P < 0.05). The decrease in colon length induced by dextran sulfate sodium was significantly alleviated in GFO-treated mice compared with glucose-treated mice (P < 0.01). In addition, the histologic findings showed that intestinal inflammation was significantly attenuated in mice treated with GFO. Furthermore, treatment with GFO significantly inhibited the dextran sulfate sodium-induced increase in the mRNA expression of interleukin-1ß. CONCLUSION: These results suggest that GFO has potential therapeutic value as an adjunct therapy for ulcerative colitis.


Assuntos
Colite Ulcerativa/terapia , Fibras na Dieta/administração & dosagem , Glutamina/administração & dosagem , Oligossacarídeos/administração & dosagem , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/química , Citocinas/genética , Sulfato de Dextrana , Suplementos Nutricionais , Modelos Animais de Doenças , Nutrição Enteral , Interleucina-1beta/genética , Mucosa Intestinal/química , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
10.
Diabetes Res Clin Pract ; 80(1): 48-55, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18177973

RESUMO

Corosolic acid (CRA), an active component of Banaba leaves (Lagerstroemia speciosa L.), decreases blood glucose in diabetic animals and humans. In this study, we investigated the mechanism of action of CRA on gluconeogenesis in rat liver. CRA (20-100 microM) dose-dependently decreased gluconeogenesis in perfused liver and in isolated hepatocytes. Fructose-2,6-bisphosphate (F-2,6-BP), a gluconeogenic intermediate, plays a critical role in hepatic glucose output by regulating gluconeogenesis and glycolysis in the liver. CRA increased the production of F-2,6-BP along with a decrease in intracellular levels of cAMP both in the presence and in the absence of forskolin in isolated hepatocytes. While a cAMP-dependent protein kinase (PKA) inhibitor inhibited hepatic gluconeogenesis, the drug did not intensify the inhibitory effect of CRA on hepatic gluconeogenesis in isolated hepatocytes. These results indicate that CRA inhibits gluconeogenesis by increasing the production of F-2,6-BP by lowering the cAMP level and inhibiting PKA activity in isolated hepatocytes. Furthermore, CRA increased glucokinase activity in isolated hepatocytes without affecting glucose-6-phosphatase activity, suggesting the promotion of glycolysis. These effects on hepatic glucose metabolism may underlie the various anti-diabetic actions of CRA.


Assuntos
Gluconeogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Radioisótopos de Carbono , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Frutosedifosfatos/biossíntese , Glucose/biossíntese , Glucose-6-Fosfatase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Isoquinolinas/farmacologia , Ácido Láctico/metabolismo , Musa/química , Extratos Vegetais/química , Folhas de Planta/química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Sulfonamidas/farmacologia , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA