Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 868-879, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318484

RESUMO

Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.


Assuntos
Helianthus , Polinização , Flores , Pólen , Temperatura
2.
PLoS Genet ; 7(3): e1001350, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483796

RESUMO

Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE-binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE-containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Relógios Biológicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica
3.
Plant Cell ; 17(7): 1926-40, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15923346

RESUMO

The circadian clock exerts a major influence on transcriptional regulation in plants and other organisms. We have previously identified a motif called the evening element (EE) that is overrepresented in the promoters of evening-phased genes. Here, we demonstrate that multimerized EEs are necessary and sufficient to confer evening-phased circadian regulation. Although flanking sequences are not required for EE function, they can modulate EE activity. One flanking sequence, taken from the PSEUDORESPONSE REGULATOR 9 promoter, itself confers dawn-phased rhythms and has allowed us to define a new clock promoter motif (the morning element [ME]). Scanning mutagenesis reveals that both activators and repressors of gene expression act through the ME and EE. Although our experiments confirm that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are likely to act as repressors via the EE, they also show that they have an unexpected positive effect on EE-mediated gene expression as well. We have identified a clock-regulated activity in plant extracts that binds specifically to the EE and has a phase consistent with it being an activator of expression through the EE. This activity is reduced in CCA1/LHY null plants, suggesting it may itself be part of a circadian feedback loop and perhaps explaining the reduction in EE activity in these double mutant plants.


Assuntos
Arabidopsis/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Elementos Reguladores de Transcrição/genética , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Proteínas de Arabidopsis/genética , Relógios Biológicos/genética , Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA