Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29552544

RESUMO

Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.


Assuntos
Acanthamoeba/microbiologia , Dictyostelium/microbiologia , Modelos Animais de Doenças , Legionella/metabolismo , Doença dos Legionários/microbiologia , Doença dos Legionários/veterinária , Acanthamoeba castellanii/microbiologia , Amoeba/microbiologia , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , GTP Fosfo-Hidrolases , Interações Hospedeiro-Patógeno/fisiologia , Legionella/patogenicidade , Legionella pneumophila/metabolismo , Macrófagos/microbiologia , Fosfatidilinositóis/metabolismo , Proteômica , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia
2.
PLoS One ; 12(7): e0181121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727774

RESUMO

Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR) in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.


Assuntos
Dictyostelium/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Virulência/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Mycobacterium marinum/patogenicidade , Mycobacterium marinum/fisiologia , Mycobacterium marinum/ultraestrutura , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA