RESUMO
Previous work with Caco-2 cell cultures has shown that individual polyphenols can either promote or inhibit iron uptake. This investigation was designed to characterize the relationship between iron bioavailability and seed coat polyphenol composition in a panel of 14 yellow beans representing five market classes with the potential for fast cooking time and high iron content. The study included two white and two red mottled bean lines, which represent high and low iron bioavailability capacity in dry beans, respectively. Polyphenols were measured quantitatively by high-performance liquid chromatography-mass spectrometry (HPLC-MS)/UV and iron bioavailability of seed coat extracts was measured in Caco-2 assays. Thirteen of the yellow bean seed types contained high concentrations (up to 35.3 ± 2.7 µmol/g) of kaempferol 3-glucoside (k 3-g), a known promoter of iron uptake. A general association between the ratio of promoting to inhibiting polyphenols (P/I) and iron uptake was observed. The presence of iron uptake inhibiting condensed tannins proportionately countered the promotional effects of kaempferol compounds. Unidentified factors present in seed coats other than polyphenols also appeared to affect iron uptake.
Assuntos
Ferro/metabolismo , Phaseolus/química , Extratos Vegetais/química , Polifenóis/química , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Humanos , Ferro/química , Phaseolus/classificação , Phaseolus/metabolismo , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Sementes/química , Sementes/metabolismoRESUMO
Polyphenolic compounds present in the seed coat of common bean (Phaseolus vulgaris L.) are known to act collectively as inhibitors of iron bioavailability. Recent research identified specific polyphenols as being potent Fe uptake inhibitors. That research also identified other polyphenols as being promoters of Fe uptake. The present study extends that work using a Caco-2 cell model to characterize the effects of 43 additional polyphenols on Fe uptake. In addition, this study indicates that the inhibitory compounds have a more potent effect that outweighs the ability of promoting compounds to increase Fe uptake. For example, a ratio of 100:0 epicatechin (a promoter)/myricetin (an inhibitor) produced 78.5 ± 6.7 ng ferritin/mg protein, 90:10 yielded 27.4 ± 3.0, 50:50 yielded 3.42 ± 0.54, and 0:100 yielded 2.26 ± 0.25 ng ferritin/mg protein. A simulation of the relative concentrations of eight major polyphenols (four inhibitors, four promoters) present in a sample of black bean seed coats demonstrated that most of the inhibitory compounds would need to be removed to reduce the negative effect on Fe uptake. In vivo studies are now warranted to confirm the above in vitro effects. Such work would be significant as other bean color classes exist that are likely to have polyphenolic profiles that are more favorable to Fe bioavailability.
Assuntos
Ferro/metabolismo , Phaseolus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Extratos Vegetais/química , Polifenóis/químicaRESUMO
Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds.
Assuntos
Ferro/metabolismo , Phaseolus/metabolismo , Sementes/metabolismo , Selênio/metabolismo , Zinco/metabolismo , Biofortificação , Disponibilidade Biológica , Biomassa , Células CACO-2 , Humanos , Minerais/metabolismo , Ácido Fítico/metabolismo , Polifenóis/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 µM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.
Assuntos
Micronutrientes/metabolismo , Selênio/farmacologia , Enxofre/metabolismo , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismoRESUMO
Iron (Fe) deficiency is a highly prevalent micronutrient insufficiency predominantly caused by a lack of bioavailable Fe from the diet. The consumption of beans as a major food crop in some populations suffering from Fe deficiency is relatively high. Therefore, our objective was to determine whether a biofortified variety of cream seeded carioca bean (Phaseolus vulgaris L.) could provide more bioavailable-Fe than a standard variety using in-vivo (broiler chicken, Gallus gallus) and in-vitro (Caco-2 cell) models. Studies were conducted under conditions designed to mimic the actual human feeding protocol. Two carioca-beans, a standard (G4825; 58 µg Fe/g) and a biofortified (SMC; 106 µg Fe/g), were utilized. Diets were formulated to meet the nutrient requirements of Gallus gallus except for Fe (33.7 and 48.7 µg Fe/g, standard and biofortified diets, respectively). In-vitro observations indicated that more bioavailable-Fe was present in the biofortified beans and diet (P<0.05). In-vivo, improvements in Fe-status were observed in the biofortified bean treatment, as indicated by the increased total-body-Hemoglobin-Fe, and hepatic Fe-concentration (P<0.05). Also, DMT-1 mRNA-expression was increased in the standard bean treatment (P<0.05), indicating an upregulation of absorption to compensate for less bioavailable-Fe. These results demonstrate that the biofortified beans provided more bioavailable Fe; however, the in vitro results revealed that ferritin formation values were relatively low. Such observations are indicative of the presence of high levels of polyphenols and phytate that inhibit Fe absorption. Indeed, we identified higher levels of phytate and quercetin 3-glucoside in the Fe biofortified bean variety. Our results indicate that the biofortified bean line was able to moderately improve Fe-status, and that concurrent increase in the concentration of phytate and polyphenols in beans may limit the benefit of increased Fe-concentration. Therefore, specific targeting of such compounds during the breeding process may yield improved dietary Fe-bioavailability. Our findings are in agreement with the human efficacy trial that demonstrated that the biofortified carioca beans improved the Fe-status of Rwandan women. We suggest the utilization of these in vitro and in vivo screening tools to guide studies aimed to develop and evaluate biofortified staple food crops. This approach has the potential to more effectively utilize research funds and provides a means to monitor the nutritional quality of the Fe-biofortified crops once released to farmers.
Assuntos
Alimentos Fortificados , Deficiências de Ferro , Phaseolus/metabolismo , Animais , Disponibilidade Biológica , Células CACO-2 , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Galinhas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Feminino , Ferritinas/metabolismo , Humanos , Necessidades Nutricionais , Oxirredutases/genética , Oxirredutases/metabolismo , Phaseolus/genética , RuandaRESUMO
BACKGROUND: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb)-synthesis. Pearl millet (PM) is common in West-Africa and India, and is well adapted to growing areas characterized by drought, low-soil fertility, and high-temperature. Because of its tolerance to difficult growing conditions, it can be grown in areas where other cereal crops, such as maize, would not survive. It accounts for approximately 50% of the total world-production of millet. Given the widespread use of PM in areas of the world affected by Fe-deficiency, it is important to establish whether biofortified-PM can improve Fe-nutriture. METHODS: Two isolines of PM, a low-Fe-control ("DG-9444", Low-Fe) and biofortified ("ICTP-8203 Fe",High-Fe) in Fe (26 µg and 85 µg-Fe/g, respectively) were used. PM-based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (Fe concentrations were 22.1±0.52 and 78.6±0.51 µg-Fe/g for the Low-Fe and High-Fe diets, respectively). For 6-weeks, Hb, feed-consumption and body-weight were measured (n = 12). RESULTS: Improved Fe-status was observed in the High-Fe group, as suggested by total-Hb-Fe values (15.5±0.8 and 26.7±1.4 mg, Low-Fe and High-Fe respectively, P<0.05). DMT-1, DcytB, and ferroportin mRNA-expression was higher (P<0.05) and liver-ferritin was lower (P>0.05) in the Low-Fe group versus High-Fe group. In-vitro comparisons indicated that the High-Fe PM should provide more absorbable-Fe; however, the cell-ferritin values of the in-vitro bioassay were very low. Such low in-vitro values, and as previously demonstrated, indicate the presence of high-levels of polyphenolic-compounds or/and phytic-acid that inhibit Fe-absorption. LC/MS-analysis yielded 15 unique parent aglycone polyphenolic-compounds elevated in the High-Fe line, corresponding to m/z = 431.09. CONCLUSIONS: The High-Fe diet appeared to deliver more absorbable-Fe as evidenced by the increased Hb and Hb-Fe status. Results suggest that some PM varieties with higher Fe contents also contain elevated polyphenolic concentrations, which inhibit Fe-bioavailability. Our observations are important as these polyphenols-compounds represent potential targets which can perhaps be manipulated during the breeding process to yield improved dietary Fe-bioavailability. Therefore, the polyphenolic and phytate profiles of PM must be carefully evaluated in order to further improve the nutritional benefit of this crop.
Assuntos
Ferro da Dieta/administração & dosagem , Ferro/análise , Ferro/farmacocinética , Pennisetum/química , Polifenóis/análise , Sementes/química , África Ocidental , Ração Animal/análise , Animais , Disponibilidade Biológica , Células CACO-2 , Galinhas , Ferritinas/análise , Ferritinas/biossíntese , Alimentos Fortificados , Hemoglobinas/análise , Hemoglobinas/biossíntese , Humanos , Índia , Deficiências de Ferro , Fígado/química , Modelos Animais , Necessidades Nutricionais , Ácido Fítico/análiseRESUMO
Exploration of genetic resources for micronutrient concentrations facilitates the breeding of nutrient-dense crops, which is increasingly seen as an additional, sustainable strategy to combat global micronutrient deficiency. In this work, we evaluated genotypic variation in grain nutrient concentrations of 20 Brazil wheat (Triticum aestivum L.) accessions in response to zinc (Zn) and Zn plus selenium (Se) treatment. Zn and Se concentrations in grains exhibited 2- and 1.5-fold difference, respectively, between these wheat accessions. A variation of up to 3-fold enhancement of grain Zn concentration was observed when additionally Zn was supplied, indicating a wide range capacity of the wheat lines in accumulating Zn in grains. Moreover, grain Zn concentration was further enhanced in some lines following supply of Zn plus Se, showing stimulative effect by Se and the feasibility of simultaneous biofortification of Zn and Se in grains of some wheat lines. In addition, Se supply with Zn improved the accumulation of another important micronutrient, iron (Fe), in grains of half of these wheat lines, suggesting a beneficial role of simultaneous biofortification of Zn with Se. The significant diversity in these wheat accessions offers genetic potential for developing cultivars with better ability to accumulate important micronutrients in grains.
Assuntos
Variação Genética , Genótipo , Sementes/metabolismo , Selênio/metabolismo , Triticum/genética , Zinco/metabolismo , Brasil , Ferro/metabolismo , Especificidade da Espécie , Triticum/metabolismoRESUMO
Here, we examined the effectiveness of two approaches for reducing cadmium (Cd) accumulation in durum wheat (Triticum turgidum L. var durum) grain: the application of supplemental zinc (Zn), and the use of cultivars exhibiting reduced grain Cd concentrations. Two durum wheat near-isogenic lines (NIL) that differ in grain Cd accumulation were grown to maturity in solution culture containing a chelating agent to buffer the free activities of Zn and Cd at levels approximating those of field conditions. The low Cd accumulating (L-Cd) isoline had Cd concentrations, in grains and shoot parts, which were 60-70% lower than those of the high Cd accumulating (H-Cd) isoline. Increasing the Zn activities in the nutrient solution from deficient to sufficient levels reduced the concentration of Cd in grains and vegetative shoot parts of both isolines. The results suggest that supplemental Zn reduces Cd tissue concentrations by inhibiting Cd uptake into roots. Cd partitioning patterns between roots and shoots and between spike components suggest that the physiological basis for the low Cd trait is related to the compartmentation or symplasmic translocation of Cd.