Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 62(12): 4929-4945, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28531088

RESUMO

Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.


Assuntos
Absorção de Radiação , Hipertermia Induzida , Posicionamento do Paciente , Erros de Configuração em Radioterapia , Temperatura , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Strahlenther Onkol ; 193(5): 351-366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28251250

RESUMO

Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.


Assuntos
Ensaios Clínicos como Assunto/instrumentação , Ensaios Clínicos como Assunto/normas , Hipertermia Induzida/instrumentação , Hipertermia Induzida/normas , Guias de Prática Clínica como Assunto , Garantia da Qualidade dos Cuidados de Saúde/normas , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Alemanha , Raios Infravermelhos , Internacionalidade , Micro-Ondas
3.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
4.
Phys Med Biol ; 61(7): 2646-64, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976046

RESUMO

The purpose of this work was to provide a feasible and easy to apply phantom-based quality assurance (QA) procedure for superficial hyperthermia (SHT) applicators by means of infrared (IR) thermography. The VarioCAM hr head (InfraTec, Dresden, Germany) was used to investigate the SA-812, the SA-510 and the SA-308 applicators (all: Pyrexar Medical, Salt Lake City, UT, USA). Probe referencing and thermal equilibrium procedures were applied to determine the emissivity of the muscle-equivalent agar phantom. Firstly, the disturbing potential of thermal conduction on the temperature distribution inside the phantom was analyzed through measurements after various heating times (5-50 min). Next, the influence of the temperature of the water bolus between the SA-812 applicator and the phantom's surface was evaluated by varying its temperature. The results are presented in terms of characteristic values (extremal temperatures, percentiles and effective field sizes (EFS)) and temperature-area-histograms (TAH). Lastly, spiral antenna applicators were compared by the introduced characteristics. The emissivity of the used phantom was found to be ε = 0.91 ± 0.03, the results of both methods coincided. The influence of thermal conduction with regard to heating time was smaller than expected; the EFS of the SA-812 applicator had a size of (68.6 ± 6.7) cm(2), averaged group variances were ±3.0 cm(2). The TAHs show that the influence of the water bolus is mostly limited to depths of <3 cm, yet it can greatly enhance or reduce heat generation in this regime: at a depth of 1 cm, measured maximal temperature rises were 14.5 °C for T Bolus = 30 °C and 8.6 °C for T Bolus = 21 °C, respectively. The EFS was increased, too. The three spiral antenna applicators generated similar heat distributions. Generally, the procedure proved to yield informative insights into applicator characteristics, thus making the application of an IR camera a very useful tool in SHT technical QA.


Assuntos
Hipertermia Induzida/instrumentação , Raios Infravermelhos , Termometria/instrumentação , Humanos , Hipertermia Induzida/métodos , Sensibilidade e Especificidade , Termômetros/normas , Termometria/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA