Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8538, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237175

RESUMO

Agroforestry systems can potentially increase tree diversity within agricultural landscapes, but to date, there is little understanding of the patterns of shade plant diversity within different agroforestry systems (AFS) at large spatial scales. Using compiled plant inventory data (from 23 sources, 2517 plots, and 148,255 individuals) encompassing four AFS (shaded coffee; shaded cocoa; dispersed trees on pastures; and live fences) across six countries in Central America we estimated different metrics of diversity to assess the conservation value of different AFS for shade plants. 458 shade plant species were recorded across the four agroforestry systems. Primary forest species accounted for 28% of the shade species recorded, but only 6% of the recorded individuals. No single AFS was consistently the most diverse across countries when considering rarefied species richness. Trees on pastures can potentially reach a similar species richness as cocoa and coffee systems but require sampled areas 7-30 times larger. In terms of composition, 29 species were shared across the agroforestry systems in different countries, illustrating the strong selection pressure of farmers for species that provide timber, firewood, and fruit. Our study highlights the potential contribution and limitations of different AFS for tree diversity conservation within agricultural landscapes.


Assuntos
Cacau , Café , Humanos , Biodiversidade , Árvores , Plantas , América Central , Conservação dos Recursos Naturais
2.
Proc Natl Acad Sci U S A ; 114(39): 10438-10442, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893985

RESUMO

Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.


Assuntos
Abelhas/classificação , Mudança Climática , Coffea/crescimento & desenvolvimento , Café/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Polinização/fisiologia , Agricultura/economia , Animais , Abelhas/fisiologia , Ecossistema , Fazendas/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA