Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Gerontol ; 113: 1-9, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30248357

RESUMO

Aging is characterized by progressive decline in biochemical and physiological functions. According to the free radical theory of aging, aging results from oxidative damage due to the accumulation of excess reactive oxygen species (ROS). Mitochondria are the main source of ROS production and are also the main target for ROS. Therefore, a diet high in antioxidant such as honey is potentially able to protect the body from ROS and oxidative damage. Gelam honey is higher in flavonoid content and phenolic compounds compared to other local honey. This study was conducted to determine the effects of gelam honey on age related protein expression changes in cardiac mitochondrial rat. A total of 24 Sprague-Dawley male rats were divided into two groups: the young group (2 months old), and aged group (19 months old). Each group were then subdivided into two groups: control group (force-fed with distilled water), and treatment group (force-fed with gelam honey, 2.5 g/kg), and were treated for 8 months. Comparative proteomic analysis of mitochondria from cardiac tissue was then performed by high performance mass spectrometry (Q-TOF LCMS/MS) followed by validation of selected proteins by Western blotting. Proteins were identified using Spectrum Mill software and were subjected to stringent statistical analysis. A total of 286 proteins were identified in the young control group (YC) and 241 proteins were identified in the young gelam group (YG). In the aged group, a total of 243 proteins were identified in control group (OC), and 271 proteins in gelam group (OG). Comparative proteome profiling identified 69 proteins with different abundance (p < 0.05) in OC when compared to YC, and also in YG when compared to YC. On the other hand, 55 proteins were found to be different in abundance when comparing OG with OC. In the aged group, gelam honey supplementation affected the relative abundance of 52 proteins with most of these proteins showing a decrease in the control group. Bioinformatics analysis showed that the majority of the affected proteins were involved in the respiratory chain (OXPHOS) which play an important role in maintaining mitochondrial function.


Assuntos
Envelhecimento , Mel , Mitocôndrias Cardíacas/fisiologia , Fosforilação Oxidativa , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/química , Suplementos Nutricionais , Flavonoides/química , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
2.
Oxid Med Cell Longev ; 2014: 673628, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505937

RESUMO

Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities.


Assuntos
Mel , Estresse Oxidativo/efeitos dos fármacos , Fatores Etários , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA