Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 91(5): 1097-1109, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27545713

RESUMO

Neural circuits formed during postnatal development have to be maintained stably thereafter, but their mechanisms remain largely unknown. Here we report that the metabotropic glutamate receptor subtype 1 (mGluR1) is essential for the maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus (dLGN). In mGluR1 knockout (mGluR1-KO) mice, strengthening and elimination at retinogeniculate synapses occurred normally until around postnatal day 20 (P20). However, during the subsequent visual-experience-dependent maintenance phase, weak retinogeniculate synapses were newly recruited. These changes were similar to those of wild-type (WT) mice that underwent visual deprivation or inactivation of mGluR1 in the dLGN from P21. Importantly, visual deprivation was ineffective in mGluR1-KO mice, and the changes induced by visual deprivation in WT mice were rescued by pharmacological activation of mGluR1 in the dLGN. These results demonstrate that mGluR1 is crucial for the visual-experience-dependent maintenance of mature synaptic connectivity in the dLGN.


Assuntos
Corpos Geniculados/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Vias Visuais/fisiologia , Animais , Carbamatos/farmacologia , Corpos Geniculados/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Camundongos , Camundongos Knockout , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinóis/farmacologia , Retina/fisiologia , Privação Sensorial/fisiologia , Xantenos/farmacologia
2.
J Neurosci ; 32(4): 1311-28, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279216

RESUMO

In the adult cerebellum, each Purkinje cell (PC) is innervated by a single climbing fiber (CF) in proximal dendrites and 10(5)-10(6) parallel fibers (PFs) in distal dendrites. This organized wiring is established postnatally through heterosynaptic competition between PFs and CFs and homosynaptic competition among multiple CFs. Using PC-specific Cav2.1 knock-out mice (PC-Cav2.1 KO mice), we have demonstrated recently that postsynaptic Cav2.1 plays a key role in the homosynaptic competition by promoting functional strengthening and dendritic translocation of single "winner" CFs. Here, we report that Cav2.1 in PCs, but not in granule cells, is also essential for the heterosynaptic competition. In PC-Cav2.1 KO mice, the extent of CF territory was limited to the soma and basal dendrites, whereas PF territory was expanded reciprocally. Consequently, the proximal somatodendritic domain of PCs displayed hyperspiny transformation and fell into chaotic innervation by multiple CFs and numerous PFs. PC-Cav2.1 KO mice also displayed patterned degeneration of PCs, which occurred preferentially in aldolase C/zebrin II-negative cerebellar compartments. Furthermore, the mutually complementary expression of phospholipase Cß3 (PLCß3) and PLCß4 was altered such that their normally sharp boundary was blurred in the PCs of PC-Cav2.1 KO mice. This blurring was caused by an impaired posttranscriptional downregulation of PLCß3 in PLCß4-dominant PCs during the early postnatal period. A similar alteration was noted in the banded expression of the glutamate transporter EAAT4 in PC-Cav2.1 KO mice. Therefore, Cav2.1 in PCs is essential for competitive synaptic wiring, cell survival, and the establishment of precise boundaries and reciprocity of biochemical compartments in PCs.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Compartimento Celular/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Cerebelo/química , Cerebelo/citologia , Cerebelo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células de Purkinje/química , Sinapses/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA