Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Prod Res ; 36(4): 994-998, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33121282

RESUMO

COVID 19; an infectious disease; firstly identified in December 2019 in Wuhan, China and has since spread globally, resulting in an ongoing pandemic. Searching for protease inhibitors is a challenging task in controlling COVID 19. Genus Ficus is known to be a rich source of phenolic compounds. Metabolic profiling of leaves methanolic extract of Ficus microcarpa (Moraceae) revealed nine compounds (1-9) mainly phenolics. Docking studies concerning these compounds against SARS-CoV-2 main protease showed that quercetin 3,7-O-α-L-dirhamnoside (1) and rutin (3) possessed significant binding stability at the N3 binding site in different activity degrees, which is comparable with COVID-19 main protease inhibitor, darunavir. Our study suggests that compounds quercetin 3,7-O-α-L-dirhamnoside and rutin might be potential candidates for the development of therapies against SARS-CoV-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Ficus , Extratos Vegetais , Antivirais/química , Antivirais/farmacologia , Ficus/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos
2.
Food Funct ; 12(22): 11303-11318, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34643201

RESUMO

In the present study, we investigated the hypoglycemic effect of different extracts (i.e. organic and aqueous) derived from the fruits of Hyphaene thebaica (doum) on male streptozotocin-induced diabetic rats. Blood glucose levels as well as the relative gene expression of insulin, TNF-α, and TGF-ß were determined in the pancreatic tissue of the experimental animals. Treatment of STZ-induced diabetic rats with aqueous extracts of the plant fruit over 7 weeks significantly reduced the elevated blood glucose and increased the relative expression of insulin, while the relative expression of inflammatory mediators (i.e. TNF-α and TGF-ß) was significantly reduced. Histopathological investigation also revealed that the aqueous extract treatment effectively reversed the ß-cell necrosis induced by STZ and restored its normal morphology. Furthermore, liquid chromatography high resolution mass spectrometry (LC-HRMS) and in silico chemical investigation of the aqueous extract elucidated its major bioactive phytochemicals (i.e. flavonoids) and putatively determined the pancreatic KATP channel as a target for these bioactive components. In vitro insulin secretion assay revealed that myricetin, luteolin, and apigenin were able to induce insulin secretion by human pancreatic cells (insulin production = 20.9 ± 1.3, 13.74 ± 1.8, and 11.33 ± 1.1 ng mL-1, respectively). Using molecular docking and dynamics simulations, we were able to shed the light on the insulin secretagogue's mode of action through these identified bioactive compounds and to determine the main structural elements required for its bioactivity. This comprehensive investigation of this native fruit will encourage future clinical studies to recommend edible and widely available fruits like doum to be a part of DM treatment plans.


Assuntos
Arecaceae/química , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/efeitos dos fármacos , Flavonoides/farmacologia , Insulina/metabolismo , Masculino , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Ratos , Ratos Wistar
3.
RSC Adv ; 11(36): 22398-22408, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480825

RESUMO

Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. seeds (sesame) were led to isolation of seven known compounds, five lignan; sesamin 1, sesamolin 2, pinoresinol 3, hydroxymatairesinol 6, spicatolignan 7, together with two simple phenolic compounds; ferulic acid 4 and vanillic acid 5. All isolated compounds were evaluated in silico against three important SARS-CoV-2 protein targets; main protease (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) which possessed crucial role in replication and proliferation of the virus inside the human cell. The results revealed that compound 6 has the high affinity against the three main proteins, specially towards the SARS-CoV-2 Mpro that exceeded the currently used SARS-CoV-2 Mpro inhibitor darunavir as well as, exhibiting a similar binding energy at SARS CoV-2 PLpro when compared with the co-crystallized ligand. This activity continued to include the RdRp as it displayed a comparable docking score with remdesivir. Inferiorly, compounds 1 and 2 showed also similar triple inhibitory effect against the three main proteins while compound 7 exhibited a dual inhibitory effect against SARS CoV-2 PLPro and RdRp. Further molecular dynamic simulation experiments were performed to validate these docking experiments and to calculate their binding free energies (ΔGs). Compounds 1, 2, 3, 6, and 7 showed comparable binding stability inside the active site of each enzyme with ΔG values ranged from -4.9 to -8.8 kcal mol-1. All the compounds were investigated for their ADME and drug likeness properties, which showed acceptable ADME properties and obeying Lipinski's rule of five parameters. It can be concluded that the isolated compounds from sesame lignans could be an alternative source for the development of new natural leads against COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA