Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1322778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332949

RESUMO

The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%-87%, germ tube formation by 72%-90%, cell surface hydrophobicity by 68.2%-82.8%, and exopolysaccharide (EPS) production by 69%-86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.


Assuntos
Artemisia , Diabetes Mellitus , Pé Diabético , Nanopartículas Metálicas , Candida albicans , Fatores de Virulência/farmacologia , Estanho/farmacologia , Azóis/farmacologia , Óxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Biofilmes , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
2.
Environ Sci Pollut Res Int ; 29(4): 5517-5525, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34420167

RESUMO

The bioactivity of nanoparticles has engendered a promise in scientific communities for developing novel therapeutic strategies. This study investigated the protective effects of selenium nanoparticles (SeNPs) against kidney injury in streptozocin-induced diabetes during pregnant (DDP) rats. The female rats were separated into three groups (n = 8). Group 1 received the vehicle, normal saline. Group 2 received a single intraperitoneal dose of 50 mg/kg of streptozocin. Group 3 received a single intraperitoneal injection of 50 mg/kg of streptozocin, followed by treatment with SeNPs at a dose of 2.5 mg/kg twice a week for 6 weeks (1 week before gestation and continuing for 5 additional weeks). The structure formed by the fabricated SeNPs with citric acid in the presence of ascorbic acid indicated that nano-Se was associated with a carbon matrix. The diabetic group suffered from polyuria, a reduction in body weight, delayed gestation, and only 40% successful pregnancy compared with the control rats. Interestingly, SeNPs significantly reduced the rate of urination, accelerated the start of gestation, and increased the percentage of successful pregnancy in females with DM. Severe changes were observed in the pancreatic ß-cells of the diabetic rats, with darkly stained and fragmented chromatin in nuclei, while SeNPs partially restored the normal morphological features of the pancreatic ß-cells. The concentrations of urea, creatinine, MDA, and glucose were significantly increased in the diabetic rats, while GSH was significantly reduced compared with controls. Interestingly, SeNPs restored all of these parameters to values at or near control levels. SeNPs were capable of improving the histological structure of the kidney in mothers with DDP. Hence, the present work is relevant to GDM demonstrating SeNPs shielding the kidney structure and function in vivo.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Nanopartículas , Selênio , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Suplementos Nutricionais , Feminino , Gravidez , Ratos
3.
ACS Omega ; 6(29): 18823-18835, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337222

RESUMO

Quorum sensing (QS) and biofilm inhibition are recognized as the novel drug targets for the broad-spectrum anti-infective strategy to combat the infections caused by drug-resistant bacterial pathogens. Many compounds from medicinal plants have been found to demonstrate anti-infective activity. However, broad-spectrum anti-QS and antibiofilm efficacy and their mode of action are poorly studied. In this study, the efficacy of coumarin was tested against QS-regulated virulent traits of Gram-negative bacteria. Coumarin inhibited the production of violacein pigment in Chromobacterium violaceum 12472 by 64.21%. Similarly, there was 87.25, 70.05, 76.07, 58.64, 48.94, and 81.20% inhibition of pyocyanin, pyoverdin, and proteolytic activity, lasB elastase activity, swimming motility, and rhamnolipid production, respectively, in Pseudomonas aeruginosa PAO1. All tested virulence factors of Serratia marcescens MTCC 97 were also suppressed by more than 50% at the highest sub-minimum inhibitory concentration. Moreover, the biofilms of bacterial pathogens were also inhibited in a dose-dependent manner. Molecular docking and molecular dynamics (MD) simulation gave insights into the possible mode of action. The binding energy obtained by docking studies ranged from -5.7 to -8.1 kcal mol-1. Coumarin was found to be docked in the active site of acylhomoserine lactone (AHL) synthases and regulatory proteins of QS. MD simulations further supported the in vitro studies where coumarin formed a stable complex with the tested proteins. The secondary structure of all proteins showed a negligible change in the presence of coumarin. Computational studies showed that the possible mechanisms of anti-QS activity were the inhibition of AHL synthesis, antagonization of QS-regulatory proteins, and blocking of the receptor proteins. The findings of this study clearly highlight the potency of coumarin against the virulence factors of Gram-negative bacterial pathogens that may be developed as an effective inhibitor of QS and biofilms.

4.
Environ Sci Pollut Res Int ; 28(24): 31138-31150, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598840

RESUMO

Many active molecules used in the development of new drugs are produced by ants. Present study assessed antioxidant and anti-inflammatory properties of Samsum ant venom (SAV) extract in carbon tetrachloride (CCL4)-induced spleen toxicity. Toxicity and oxidative stress were measured in four experimental groups: a negative control group without any treatment, a positive control group (CCl4-treated rats; a single dose of 1 ml/kg CCL4), an experimental group of CCl4-treated rats co-treated daily with SAV (100 µl), and a group to determine safe use with rats treated only with SAV (100 µl) daily for 3 weeks. CCl4-treatment led to an elevation in toxicity and oxidative stress. CCl4 significantly elevated malondialdehyde (MDA) levels, as well as expression of inhibitor of κB (IκB) and tumor necrosis factor-α (TNF-α) proteins. On the other hand, a decrease in glutathione (GSH) and catalase (CAT) levels were detected in CCl4-treated rats. Co-treatment with SAV was found to reduce these inflammatory and oxidative parameters. SAV elucidated a significant recovery of MDA concentration as well as a significant restoration in GSH levels compared to CCl4-treated rats; however, SAV increased CAT levels compared to normal rats. Hence, SAV was found to restore splenomegaly induced in CCl4-treated rats. Histopathological analysis also favored the biochemical analysis showing improvement in splenic architecture in CCl4 and SAV co-treated rats. The antioxidant properties of SAV may potentially enhance anti-inflammatory actions and improve spleen structure and function in CCl4-challenged rats.


Assuntos
Venenos de Formiga , Doença Hepática Induzida por Substâncias e Drogas , Animais , Venenos de Formiga/metabolismo , Antioxidantes/metabolismo , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Ratos , Baço
5.
Microb Pathog ; 144: 104172, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32224208

RESUMO

Antimicrobial resistance among pathogenic bacteria has become a global threat to human health. Due to poor progress in development of new antimicrobial drugs, there is a need for the development of novel alternative strategies to combat the problem of multidrug resistance. Moreover, there is focus on ecofriendly approach for the synthesis nanoparticles having efficient medicinal properties including antivirulence properties to tackle the emergence of multi-drug resistance. Targeting quorum sensing controlled virulence factors and biofilms has come out to be a novel anti-infective drug target. The silver nanoparticles (Ag@CC-NPs) were synthesized from aqueous extract of Carum copticum and characterized using UV-vis absorption spectroscopy, fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Ag@CC-NPs were checked for its ability to inhibit quorum sensing-mediated virulence factors and biofilms against three test pathogens at sub-MIC values. There was ~75% inhibition of violacein production by Ag@CC-NPs against C. violaceum. The P. aeruginosa virulence factors such as pyocyanin production, pyoverdin production, exoprotease activity, elastase activity, swimming motility and rhamnolipid production were inhibited by 76.9, 49.0, 71.1, 53.3, 89.5, and 60.0% at sub-MIC. Moreover, virulence factors of S. marcescens viz. prodigiosin production, exoprotease activity, and swarming motility was reduced by 78.4, 67.8, and 90.7%. Ag@CC-NPs also exhibited broad-spectrum antibiofilm activity with 77.6, 86.3, and 75.1% inhibition of biofilms of P. aeruginosa, S. marcescens, and C. violaceum respectively. The biofilm formation on glass coverslip was reduced remarkably as evident from SEM and CLSM analysis. The findings revealed the in vitro efficacy of Ag@CC-NPs against bacterial pathogens and can be exploited in the development of alternative therapeutic agent in management of bacterial infections for topical application, mainly wound infection, or coating of surfaces to prevent bacterial adherence on medical devices.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Fatores de Virulência/antagonistas & inibidores , Carum/metabolismo , Chromobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Indóis/metabolismo , Locomoção/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prodigiosina/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/biossíntese , Serratia marcescens/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
6.
BMC Pharmacol Toxicol ; 20(1): 84, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847893

RESUMO

BACKGROUND: For many decades, the sting of Samsun ant (Pachycondyla sennaarensis) has been a serious clinical challenge for the people living in some of the major Middle East and Asian countries. In the present study, the therapeutic potential of Nigella sativa derived plant extract component, thymoquinone (TQ) has been tested against the Samsun ant venom (SAV) at the toxic dose in the rats. METHODS: The adult male rats were divided into four groups (n = 10): control, SAV treated, SAV + TQ treated and TQ alone treated. It was found that the sub-lethal dose of SAV alters not only many of the kidney and liver function markers but also induces oxidative stress in the animals. Moreover, the SAV also disturbs various immunological parameters including expression of PMNs, CD-80, CD-86, interleukins and other cytokines compromising the affected organism towards mild to severe allergic reactions including life-risking anaphylaxis. RESULTS: The plant extract, TQ, effectively restores many of the biochemical and oxidative stress parameters comparable to the normal concomitant with improving the immunological aspects that might attributive in relieving from SAV-induced toxicity and allergic reactions in the affected organism to a greater extent. CONCLUSION: Hence, TQ has an excellent antidote property against SAV-induced toxicities in vivo. Although the study is a vivid indication of the potential therapeutic potential of TQ against the SAV induced in vivo toxicity, yet the actual mechanism of interaction translating the toxicity amelioration warrants further investigations.


Assuntos
Venenos de Formiga/toxicidade , Anti-Inflamatórios/farmacologia , Benzoquinonas/farmacologia , Mordeduras e Picadas de Insetos/tratamento farmacológico , Nigella sativa/química , Extratos Vegetais/farmacologia , Doença Aguda , Animais , Anti-Inflamatórios/isolamento & purificação , Formigas , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Benzoquinonas/isolamento & purificação , Biomarcadores/sangue , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Mordeduras e Picadas de Insetos/sangue , Mordeduras e Picadas de Insetos/induzido quimicamente , Mordeduras e Picadas de Insetos/imunologia , Testes de Função Renal , Testes de Função Hepática , Masculino , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar
7.
Biomed Res Int ; 2019: 2835152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984778

RESUMO

Traditionally, in many countries, various parts of the Adansonia digitata (A. digitata) tree have been used in the treatment of many clinical ailments including diarrhea and dysentery. The phytochemical screening has indicated that the leaf extract of A. digitata contains flavonoids, saponins, mucilage, steroids, and alkaloids. Thus, this paper aims to evaluate the hyperglycaemic and hypolipidaemic effects of methanolic extract of A. digitata leaves (200 mg/kg and 400 mg/kg) in diabetic rats. The extract was administered orally for six weeks in the streptozotocin (STZ)-induced diabetic rats. The treatment with the extract caused a significant reduction in the blood glucose, glycosylated hemoglobin, cholesterol, triglycerides, low-density lipoprotein (LDL), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) levels by 46.7%, 46.15%, 48.91%, 43%, 60%, 66%, 45.45%, and 30.4%, respectively, as compared to the diabetic group after the sixth week of treatment. The leaf extract also mitigated the decline of high-density lipoprotein (HDL) level, RBCs count, hemoglobin level, packed cell volume (PCV %), and erythropoietin concentration in diabetic rats by 31%, 33.25%, 24.72%, 51.42%, and 220.68% with respect to the diabetic group. Also, the extract maintained the level of antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), and reduced glutathione (GSH) in the diabetic rats. It also reduced the elevation in the white blood corpuscles (WBC) count in the STZ-induced diabetic rats. Our study, therefore, indicates that methanolic extract of A. digitata leaf exerts strong antidiabetic and hypolipidaemic properties in a dose-dependent manner by improving the hematological properties and redox parameters in the experimental diabetic rats.


Assuntos
Adansonia/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Glicemia/efeitos dos fármacos , Catalase/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Humanos , Hiperglicemia/sangue , Hiperglicemia/patologia , Hiperlipidemias/sangue , Hiperlipidemias/patologia , Hipoglicemiantes/administração & dosagem , Interleucina-6/sangue , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/sangue
8.
Sci Rep ; 8(1): 1682, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374195

RESUMO

The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Cobre/metabolismo , Sinergismo Farmacológico , Mesilato de Imatinib/administração & dosagem , Mesilato de Imatinib/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Dissulfiram/metabolismo , Metabolismo/efeitos dos fármacos , Neoplasias Experimentais/induzido quimicamente , Ratos , Resultado do Tratamento
9.
Lipids Health Dis ; 14: 132, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26498022

RESUMO

BACKGROUND: Diabetes mellitus alters oxidative stability and immune response. Here, we investigated the impact of a peptide extracted from camel milk (CMP) on the oxidative status, transcription factor kappa-B (NF-kB) and inflammatory cytokine in diabetic wounds. METHODS: Rats were assigned into three groups: control, diabetic induced (DM) and diabetic induced with multiple doses of CMP for a week (DM-CMP). RESULTS: DM showed a sharp decline in the activity of major antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) compared to the control. The DM-CMP group, however, showed a noticeable replenishment in the activity of these enzymes compared to the DM group. The CMP-treated group also showed a normal level of lipid peroxidation marker (MDA) compared to the DM rats. Furthermore, ELISA analysis of serum TNF-α protein showed an elevated level in diabetic rats in comparison to control serum. However, RT-PCR analysis of locally wounded skin tissues revealed that diabetes down-regulates the RNA expression of both TNF-α and MIF genes in comparison to the control samples but that CMP was found to restore RNA expression significantly. Although it was elevated in CMP-treated rats after one day of wound incision, the NF-kB protein level was significantly decreased seven days after the incision in comparison to the animals in the diabetic group. CONCLUSION: CMP, therefore, can be seen an effective antioxidant and immune stimulant that induces oxidative stability and speeds up wound healing in diabetic model animals, making it a potential adjuvant in improving wound healing in those with diabetic conditions.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Fatores Imunológicos/farmacologia , Leite/química , Proteínas do Soro do Leite/farmacologia , Animais , Camelus , Colágeno/metabolismo , Derme/metabolismo , Derme/patologia , Derme/fisiopatologia , Diabetes Mellitus Experimental/imunologia , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Fatores Imunológicos/uso terapêutico , Masculino , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Proteínas do Soro do Leite/uso terapêutico , Cicatrização/efeitos dos fármacos
10.
Biomed Res Int ; 2015: 603543, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26759811

RESUMO

Cis-Diamminedichloroplatinum II- (CP-) induced neurotoxicity is one of the least explored aspects of this drug. Dorsal root ganglia (DRG) cells are considered as the primary target, and their damage plays a vital role in pathogenesis and etiology of CP-induced neurotoxicity. The present study is aimed at confirming if riboflavin (RF) has any protective role in shielding the DRG from CP-induced toxicity. After conducting the established treatment strategy on mice under photoillumination, it was observed that, despite the fact that RF alone is partially toxic, its combination with CP significantly ameliorated the drug-induced damage in DRG cells as evidenced by histological analysis. In addition, it was interesting to observe that the combination group (RF + CP) was able to induce apoptosis in the target cells up to a significant extent which is considered as the most preferred way of countering cancer cells. Therefore, RF can act as an effective adjuvant compound in CP-based chemoradiotherapy to improve clinical outcomes in the contemporary anticancer treatment regimes.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Riboflavina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Gânglios Espinais/patologia , Humanos , Camundongos , Neoplasias/complicações , Neoplasias/patologia , Síndromes Neurotóxicas/patologia
11.
Cent Eur J Immunol ; 39(4): 441-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26155160

RESUMO

The effects of Cadmium (Cd) exposure and the treatment with Zinc (Zn) on immune functions of splenocytes and cultured lymphocytes of rats were studied. The exposure of rats to Cd was at a dose of 2.2 mg/kg CdCl2, injected subcutaneously four times weekly for 2 months. Rats were supplemented with Zn (2.2 mg/kg ZnCl2, injected subcutaneously four times weekly for 2 months) one hour prior to Cd exposure. Spleens were removed and splenocytes were isolated and cultured. The proliferation capacity of lymphocytes and their homing to the spleen were studied. Ribonucleic acid (RNA) was extracted from stimulated lymphocytes in order to analyse gene expressions using RT-PCR. Accordingly, proliferation of lymphocytes was found to be suppressed in Cd-treated rats, both in vivo and in vitro. Zinc served to activate the proliferation of B and T lymphocytes in Cd-treated rats both in vivo and in vitro. Antigen-activated lymphocytes showed that Cd impaired the mRNA expression of CD68, Ccl22 and CXCL10. Zinc was not found to restore mRNA expression of these genes to the normal levels. Zinc was found to decrease the MDA level with replenishment of activity of key antioxidant enzymes and proteins in Cd-pre-treated animals significantly. Moreover, the histopathological examination of spleen samples also agreed with the molecular, immunological and redox findings. Hence, Zn is able to restore the normal structure, redox status and immunity in Cd-induced damage in the rat model system.

12.
Food Chem Toxicol ; 59: 715-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872133

RESUMO

Cancer has been a big challenge in the clinical research arena for many years. All the major anticancer drugs are either not effective or induce serious side effects. Cisplatin (CP) is one of the most valued anticancer drugs against various forms of cancer but it exerts many side effects often resulting in withdrawal of clinical usage during long-term chemotherapy. Thus, increasing the efficacy of the drugs and minimizing deleterious side effects is needed. Vitamins like riboflavin (RF) are promising under photodynamic therapy in this aspect because of its potential as an efficient adjuvant confirmed in many cancer cell lines and animal-based studies. It has been found to alleviate CP-induced side effects significantly under photoillumination in mice. As CP exerts most of its toxic effects by oxidative and nitrosative stress; clubbing ribophototherapy with chemotherapy involving CP can shift the redox status favoring better cancer treatment. This strategy can not only increase the average life span of the cancer patients but also improve their quality of life significantly. However, cancer is still considered as a disease of genetic and metabolic disorders; hence, attacking both aspects of the disease can give better results as compared to contemporary treatment modalities.


Assuntos
Quimiorradioterapia Adjuvante , Cisplatino/uso terapêutico , Neoplasias/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Radiossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Animais , Quimiorradioterapia Adjuvante/efeitos adversos , Cisplatino/efeitos adversos , Humanos , Neoplasias/metabolismo , Oxirredução , Fármacos Fotossensibilizantes/efeitos adversos , Fototerapia/efeitos adversos , Radiossensibilizantes/efeitos adversos , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Riboflavina/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA