Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003132

RESUMO

Plant secondary compounds are potential rumen modifiers that can improve nutrient utilization in ruminant animals. This study evaluated the effect of Moringa (Moringa oleifera) and Neem (Azadirachta indica) leaf extracts on nutrient digestibility, growth performance, and enteric methane production in South African Mutton Merino lambs. Forty 4-month-old ram lambs with a mean body weight of 35 ± 2.2 kg were blocked by weight and from each block, lambs were randomly allocated into one of the following treatments: (i) diet only (fed a total mixed ration TMR-negative control), (ii) Monensin (fed TMR containing Monensin sodium, 15 mg/kg DM), (iii) Moringa (fed TMR, drenched with Moringa extract 50 mg/kg feed DM intake), and (iv) Neem (fed TMR, drenched with Neem extract 50 mg/kg DM intake). Extracts were administered via oral drenching at a concentration determined based on the previous week's feed intake. There were no differences in dry matter intake, average daily gain, feed conversion efficiency, digestibility, and nitrogen retention across the treatments. However, the extracts tended to reduce methane emitted both in g/head/day (p < 0.08) and g/ kg dry matter intake (p < 0.07). Extracts did not influence any of the blood metabolites in the ram lambs. Although the benefits of utilizing these medicinal plants as rumen modifiers under prolonged feeding conditions is justified, further evaluation is recommended to test Moringa and Neem leaf extracts at higher inclusion levels. Our research group is currently exploring a variety of phytogenic tools for the identification and standardization of key bioactive compounds linked to methane inhibition, in these leaf extracts.

2.
Data Brief ; 51: 109629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840986

RESUMO

The rumen microbial consortium plays a crucial role in the production performance and health of the ruminant animal. They are responsible for breaking down complex plant materials such as cellulose and hemicellulose to release usable energy by the host animal. Rumen microbial diversity manipulation through dietary strategies can be used to achieve several goals such as improved feed efficiency, reduced environmental impact or better utilization of low-quality forages. The dataset, deposited in the National Centre for Biotechnology Information SRA with project number PRJNA775821, comprises sequenced DNA extracted from the rumen content of 16 South African Merino sheep supplemented with different plant extracts. Illumina HiSeq™ 6000 technology was utilised to generate a total of approximately 46.7 Gb in raw nucleotide data. The data consists of 700,318,582 sequences, each with an average length of 184 base pairs. Taxonomic annotation conducted through the MG-RAST server showed the dominant phylum averages are Bacteroidetes (51 %) and Firmicutes (28 %), while Euryarchaeota, Actinobacteria, and Proteobacteria each account for approximately 3 % of the population. This dataset also enables us to identify and profile all expressed genes related to metabolic and chemical processes. The dataset is a valuable tool, offering insights that can lead to enhanced sustainability, profitability and reduced environmental impact within the context of ruminant production process.

3.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501339

RESUMO

Plant phytochemicals are an important area of study in ruminant nutrition, primarily due to their antimethanogenic potentials. Plant extract yields, their bioactive compounds and antimethanogenic properties are largely dependent on the nature of the extractive solvents. This study evaluated the yields and phytochemical constituents of four plant extracts, as affected by the aqueous-methanolic (H2O-CH3OH) extraction and their antimethanogenic properties on the in vitro methane production. The plant extracts included Aloe vera, Jatropha curcas, Moringa oleifera, and Piper betle leaves with three levels of extractions (70, 85, and 100% CH3OH). The crude plant extract yields increased with the increasing amount of water. M. oleifera crude extracts yields (g/10 g) increased from 3.24 to 3.92, A. vera, (2.35 to 3.11) J. curcas (1.77 to 2.26), and P. betle (2.42 to 3.53). However, the identified and quantified metabolites showed differing degrees of solubility unique to their plant leaves in which they exist, while some of the metabolites were unaffected by the extraction solvents. The methane mitigating potentials of these extracts were evaluated as additives on Eragrostis curvula hay at a recommended rate of 50 mg kg−1 DM. The plant extracts exhibited antimethanogenic properties to various degrees, reducing (p < 0.05) in vitro methane production in the tested hay, A. vera, J. curcas, M. oleifera and P. betle reduced methane emission by 6.37−7.55%, 8.02−11.56%, 12.26−12.97, and 5.66−7.78 respectively compared to the control treatment. However, the antimethanogenic efficacy, gas production and organic matter digestibility of the plant extracts were unaffected by the extraction solvents. Metabolites, such as aloin A, aloin B and kaempferol (in A. vera), apigenin, catechin, epicatechin, kaempferol, tryptophan, procyanidins, vitexin-7-olate and isovitexin-7-olate (in J. curcas), alkaloid, kaempferol, quercetin, rutin and neochlorogenic acid (in M. oleifera) and apigenin-7,4'-diglucoside, 3-p-coumaroylquinic acid, rutin, 2-methoxy-4-vinylphenol, dihydrocaffeic acid, and dihydrocoumaric acid (in P. betle) exhibited a methane reducing potential and hence, additional studies may be conducted to test the methane reducing properties of the individual metabolites as well as their combined forms. Plant extracts could be more promising, and hence, further study is necessary to explore other extraction methods, as well as the encapsulation of extracts for the improved delivery of core materials to the target sites and to enhance methane reducing properties. Furthermore, the use of 70% aqueous extraction on M. oleifera leaf is recommended for practical use due to the reduced cost of extractive solvents, the lower cost and availability of Moringa plants in South Africa, especially in Gauteng Province. Furthermore, 70% aqueous-methanolic extractions of A. vera, J. curcas, and P. betle are recommended for practical use in regions where they exist in abundance and are cost effective.

4.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365354

RESUMO

The use of medicinal plants and their extracts has recently attracted the attention of many researchers as a methane (CH4) mitigation strategy. This study evaluated the relationship of agronomic traits of Moringa accessions with in vitro gas production measurements and feed digestibility from ruminants. Twelve Moringa accessions were grown at the Roodeplaat experimental site of the Agricultural Research Council in Pretoria, South Africa. Agronomic traits, such as seedling survival rate, leaf yield, canopy and stem diameter, plant height, number of primary branches, plant vigor, greenness, chlorosis, disease and pest incidences were recorded. The leaves were harvested in the fifth month after transplanting to the field. Freeze-dried leaves were extracted with methanol, and their total phenolic and total flavonoid contents were determined. The extract was applied at a dose of 50 mg/kg of dry matter (DM) feed for in vitro gas production studies. Most of the growth and agronomic traits, i.e., seedling survival rate, leaf yield, canopy diameter, plant height, number of primary branches, the score of plant vigor, and greenness, total phenolics and flavonoids were significantly different among the accessions except for stem diameter and chlorosis score. All accession leaf extracts significantly reduced the total gas and CH4 production compared with the control with equal or higher in vitro organic matter digestibility. Higher CH4 inhibition was obtained in Moringa oleifera (M. oleifera) A3 (28.4%) and A11 (29.1%), whereas a lower inhibition was recorded in A1 (17.9%) and A2 (18.2%). The total phenolic (0.62) and total flavonoid (0.71) contents as well as most agronomic traits of the accessions were positively correlated with the CH4 inhibition potential of the accessions. Moringa oleifera accessions A3, A8 and A11 resulted in higher in vitro CH4 inhibition potential and improved organic matter digestibility of the feed with equal or higher adaptability performances in the field. Thus, there is a possibility of selecting Moringa accessions for higher antimethanogenic activity without compromising the feed digestibility by selecting for higher total phenolics, total flavonoids and agronomic performances traits. There is a need for further study to determine the long-term adaptability of promising accessions in the study area with concurrent antimethanogenesis efficacy when used in the diet of ruminant animals.

5.
Animals (Basel) ; 12(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009629

RESUMO

There is an increased interest in the use of medicinal plants as alternatives to antibiotic growth promoters and as agents for methane production mitigation. This study investigated the effects of Azadirachta indica and Moringa oleifera feed additives on the carcass and meat quality of lambs. Forty South African Mutton Merino lambs, weighing between 29 and 43 kg, were randomly assigned to four treatment groups (n = 10 lambs/treatment) and fed a basal total mixed ration (TMR) containing soybean meal (17%), yellow maize (28%), Alfalfa hay (20%), Eragrostis curvula hay (22.2%), molasses (6.0%), wheat offal (5%), urea (0.8%) and vitamin premix (0.5%) on a DM basis. The dietary treatments: TMR diet (control); TMR diet with A. indica leaf extract (A. indica leaf extract at a dosage of 50 mg per kg of feed: neem); TMR diet with M. oleifera leaf extract (M. oleifera leaf extract at a dosage of 50 mg per kg DM of feed: moringa); TMR diet with monensin (at a dosage of 50 mg monensin sodium per kg of feed: positive control). After an adaptation period of 10 days to the experimental conditions, the lambs from all treatment groups were fed ad libitum with the experimental diets. The lambs were slaughtered at a live weight of 60−65 kg after a 23 week trial period. The plant extract dietary additives had no significant effects on the carcass characteristics of the lambs. In comparison to monensin, supplementing with moringa leaf extracts resulted in a higher proportion of C18:1n9c (45.0% ± 0.57 vs. 40.5% ± 0.80; p < 0.05), total MUFAs (47.3% ± 0.66 vs. 42.6% ± 0.87; p < 0.05), and UFA:SFA ratio (1.01 ± 0.03 vs. 0.85 ± 0.03; p < 0.05), which may be beneficial for human health. Our results suggest that natural feed additives, such as A. indica and M. oleifera leaf extracts, can be included in lamb diets without compromising meat fatty acid composition. The negative economic impacts of such technologies on animal production and farm profitability should not be expected.

6.
Metabolites ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736433

RESUMO

This study evaluated the relationship of secondary bioactive plant metabolite ion-features (MIFs) of Moringa oleifera accessions with antimethanogenesis to identify potential MIFs that were responsible for high and low methane inhibition from ruminants. Plant extracts from 12 Moringa accessions were evaluated at a 50 mg/kg DM feed for gas production and methane inhibition. Subsequently, the accessions were classified into low and high enteric methane inhibition groups. Four of twelve accessions (two the lowest and two the highest methane inhibitors), were used to characterize them in terms of MIFs. A total of 24 samples (12 from lower and 12 from higher methane inhibitors) were selected according to their methane inhibition potential, which ranged from 18% to 29%. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and untargeted metabolomics with univariate and multivariate statistical analysis with MetaboAnalyst were used in the study. Although 86 MIFs showed (p < 0.05) variation between higher and lower methane inhibition groups and lay within the detection ranges of the UPLC-MS column, only 14 were significant with the volcano plot. However, Bonferroni correction reduced the candidate MIFs to 10, and their R2-value with methane production ranged from 0.39 to 0.64. Eventually, MIFs 4.44_609.1462 and MIF 4.53_433.1112 were identified as bioactive MIFs associated with higher methane inhibition, whereas MIF 9.06_443.2317 and 15.00_487.2319 were associated with lower methane inhibition with no significant effect on in vitro organic matter digestibility of the feed. These MIFs could be used by plant breeders as potential markers to develop new M. oleifera varieties with high methane inhibition characteristics. However, further investigation on identifying the name, structure, and detailed biological activities of these bioactive metabolites needs to be carried out for future standardization, commercialization, and application as dietary methane mitigation additives.

7.
Animals (Basel) ; 12(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565556

RESUMO

Cryopreservation and storage of semen for artificial insemination (AI) result in excessive accumulation of reactive oxygen species (ROS). This leads to a shortened life span and reduced motility of spermatozoa post-thawing, with consequent impairment of their function. However, certain levels of ROS are essential to facilitate the capacitation of spermatozoa required for successful fertilisation. Tannins, as well-known antioxidant compounds, may act as ROS binders/acceptors/scavengers to inhibit the damaging effects of ROS. This review comprises an analysis of the semen cryopreservation protocol and health functions of tannins, as well as the effects of ROS on fresh and cryopreserved semen's longevity and fertilisation. Additionally, we surveyed available evidence of the effects of tannin extract feed supplementation on male fertility. We furthermore interrogated existing theories on tannin use as a potential additive to semen extenders, its relationship with semen quality, and to what degree existing theories have been investigated to develop testable new hypotheses. Emphasis was placed on the effects of tannins on ROS, their involvement in regulating sperm structure and function during cryopreservation, and on post-thaw sperm motility, capacitation, and fertilising ability. The diverse effects of tannins on the reproductive system as a result of their potential metal ion chelation, protein precipitation, and biological antioxidant abilities have been identified. The current data are the first to support the further investigation of the incorporation of tannin-rich plant extracts into semen extenders to enhance the post-thaw survival, motility, and fertilising ability of cryopreserved spermatozoa.

8.
Antibiotics (Basel) ; 9(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937872

RESUMO

Medicinal plants have been found to be effective in a wide range of applications in ruminant animals. However, some plant extracts may be toxic to animals, depending on their seconday metabolite composition and dose, and therefore, animal trials are needed to validate their safety when used as anti-methanogenic additives. This study investigated the effect of three plant extracts used as anti-methanogenic dietary additives, on the haematology and serum biochemical parameters in sheep. Methanolic extracts of Moringa oleifera (MO), Jatropha curcas (JC) and Aloe vera (AV) were orally dosed as experimental treatments for 75 days to sheep, and their effect on the haematology and serum biochemical parameters of SA Mutton Merino (SAMM) lambs were compared with sheep on a control treatment without any additive treatment. Extracts of MO, JC and AV were extracted in 100% methanol, freeze-dried, and reconstituted in distilled water. A total of 40 lambs were ranked according to their body weight into a group of four and one sheep at a time was randomly allocated into four dietary treatments which include a control treatment, and treatment with either MO, JC or AV extract. Lambs were drenched twice daily with doses equivalent to 50 mg/kg dry matter intake (DMI) based on previous week feed consumption. Blood samples were collected via jugular vein puncture and analysed for haematology and serum biochemistry parameters, using standard procedures. The results of the haematological analysis showed that most haematological parameters were not affected by plant extract used as anti-methanogenic additives (p > 0.05), except for higher white blood cell (WBC) and lymphocytes counts recorded in control lambs and lambs in the AV treatment. All serum biochemical properties (except alkaline phosphatase) were not different (p > 0.05) between the control and lambs treated with plant extracts. Alkaline phosphatase was influenced by the plant extract (p < 0.05), with lambs receiving MO, JC and AV having lower alkaline phosphatase concentrations compared to lambs on the control diet without any additive. The result of the study showed that extracts of MO, JC and AV were not toxic to sheep when used as antimethanogenic additives at the recommended dose of 50 mg/kg dry matter feed which had proved previously to be effective in reducing enteric methane emission. Therefore, these plant extracts could be used safely as alternative dietary additives to reduce enteric methane emission and boost the productivity of SA Mutton Merino sheep.

9.
Animals (Basel) ; 10(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963192

RESUMO

Natural compounds such as plant secondary metabolites (PSM) can be used to replace antibiotic growth promoters as rumen modifiers. In this study, the effectiveness of stored and freshly extracted Aloe vera (AV), Azadirachta indica (AZ), Moringa oleifera (MO), Jatropha curcas (JA), Tithonia diversifolia (TD) and Carica papaya (CP) crude extract and monensin on in vitro gas and methane production, organic matter digestibility (IVOMD) and volatile fatty acids (VFA) were evaluated using a total mixed ration (TMR), lucerne or Eragrostis curvula substrates. Fresh extracts were processed from the same batch of frozen (-20 °C) plant material a few days before the trial while the stored extracts were extracted and stored at 4 °C for 12 months prior to the study. Extraction was done by solubilising 50 g freeze-dried plant material in 500 mL 100% methanol. Four mL of reconstituted 50 mg crude extract per 1000 mL distilled water was added per incubation vial, which already contained 400 mg substrate and in vitro fermentation, and gas production and IVOMD evaluation were carried out using standard procedures. Results showed that storing plant extracts for 12 months did not affect the activity or stability of metabolites present in the crude extracts, as shown by the lack of differences in total gas production (TGP) and methane produced between fresh or stored extracts across the substrates. In the TMR substrate, plant extracts increased IVOMD but did not affect TGP and methane production, whereas monensin did not have any effect. Plant extracts increased IVOMD of Eragrostis substrate and supressed methane production to a greater extent than monensin (p < 0.05). It can be concluded that storing plant extracts for up to 12 months did not compromise their efficacy. In addition, the use of 50 mg/kg of AV, AZ, MO, JA, TD and CP extract to a forage-based diet will reduce methane production while improving feed digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA