Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 101(3): 571-80, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11113306

RESUMO

Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide's expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges.


Assuntos
Potenciais de Ação/fisiologia , Hormônio Liberador da Corticotropina/genética , Hipocampo/crescimento & desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Neurônios/metabolismo , Estresse Fisiológico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Temperatura Baixa/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Hipertermia Induzida/efeitos adversos , Hipotálamo/metabolismo , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pentobarbital/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
2.
Epilepsia ; 40(9): 1190-7, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10487181

RESUMO

PURPOSE: The gamma-aminobutyric acid (GABA) degradation blocker gamma-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. METHODS: VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. RESULTS: In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. CONCLUSIONS: These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/biossíntese , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/fisiologia , Expressão Gênica , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Vigabatrina , Ácido gama-Aminobutírico/farmacologia
3.
Brain Res Dev Brain Res ; 114(2): 265-8, 1999 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-10320766

RESUMO

Maternal deprivation (MDep) of neonatal rats significantly influences the hypothalamic-pituitary-adrenal (HPA) axis. This study hypothesized that GR-mRNA modulation constituted an early, critical mechanism for the acute effects of MDep on neuroendocrine stress-responses. GR-mRNA hybridization signal in hippocampal CA1, hypothalamic paraventricular nucleus (PVN) and frontal cortex was significantly reduced immediately following 24 h MDep. In amygdala, cingulate cortex, PVN and CA1, apparent gender-dependent MDep effects on GR-mRNA expression were observed, without significant differences in absolute levels. Thus, rapid, region-specific MDep effects on GR-mRNA expression in HPA-regulating areas are shown, consistent with involvement of GR-expression in mechanisms of MDep influence on HPA tone.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Sistema Límbico/metabolismo , Privação Materna , RNA Mensageiro/genética , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipotálamo/crescimento & desenvolvimento , Sistema Límbico/crescimento & desenvolvimento , Masculino , Núcleo Hipotalâmico Paraventricular/crescimento & desenvolvimento , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Transcrição Gênica
4.
J Neuroendocrinol ; 10(9): 663-9, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9744483

RESUMO

Age-appropriate acute stress, such as cold exposure, provokes the secretion of corticotropin releasing factor (CRF) from the hypothalamus, leading to a robust increase of plasma corticosterone in the immature rat. This activation of the hypothalamic-pituitary-adrenal system is accompanied by a stress-induced increase of steady-state CRF-mRNA expression in the hypothalamic paraventricular nucleus (PVN). In the current study, we analysed changes in CRF-mRNA expression in the PVN and the central nucleus of the amygdala (ACe) in the immature rat in response to a single episode of cold stress and three repeated exposures to this same stressor. CRF-mRNA expression in the PVN increased after a single, but not repeated exposures to cold stress, while repeated acute stress increased the content of the CRF peptide in the anterior hypothalamus. In the ACe, repeated episodes of cold stress resulted in increased expression of CRF-mRNA. These findings indicate a differential regulation of CRF gene expression in the PVN and ACe of the immature rat by single and repeated acute stress.


Assuntos
Tonsila do Cerebelo/metabolismo , Hormônio Liberador da Corticotropina/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Doença Aguda , Animais , Temperatura Baixa , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Ratos , Recidiva , Estresse Fisiológico/metabolismo
5.
Brain Res Dev Brain Res ; 107(1): 81-90, 1998 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-9602071

RESUMO

Corticotropin releasing factor (CRF) activates two known receptor types, CRF1, and CRF2. In the adult rat brain, CRF2 has a distinct distribution pattern, suggesting that it may mediate functions exclusive of CRF1. The goal of this study was to determine the age-dependent distribution of CRF2-messenger RNA (CRF2-mRNA) in the rat brain. Brains from rats sacrificed under stress-free conditions on fetal days (F) 15, 16, 17 and 19, and postnatal days 1, 3, 5, 7, 9, 12, 15, 25, 49, and 90 (adult) were analyzed using semiquantitative in situ hybridization histochemistry. The onset and distribution of CRF2-mRNA in the developing rat brain revealed important differences from the adult expression pattern: earliest expression of CRF2-mRNA was observed in the ventromedial hypothalamus (VMH) on F16. High levels of CRF2-mRNA were present in the fronto-parietal cortex in the fetal and early postnatal brain but not later. Conversely, no CRF2-mRNA was detectable in the ventroposterior (lateral and medial) thalamic nuclei prior to postnatal day 7. Distinct developmental profiles of CRF2-mRNA were also observed in the lateral septum, medial, basal and cortical amygdala nuclei, and in several hippocampal fields. In conclusion, CRF2 is expressed in the hypothalamus on F16, prior to the detection of CRF itself in the paraventricular nucleus. The differential levels and distributions of CRF2-mRNA in hypothalamic and limbic brain regions indicate a precise regulation of this receptor's expression during development, as shown for CRF1. Regulation of the levels of CRF2 may modulate the effects of CRF (and related ligands) on target neurons, consistent with differential maturation of the functions mediated by this receptor.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Histocitoquímica , Hipotálamo/metabolismo , Hibridização In Situ , Sistema Límbico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA