Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 282: 114596, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The African Continent harbours approximately 26 Croton species. Many Croton species are used in traditional medicine in southern Africa to treat a variety of ailments including malaria, tuberculosis, microbial infection and inflammation. Considering the high diversity of the genus Croton, the ethnopharmacological information available on southern African species is rather limited. Furthermore, the potential for novel anti-inflammatory drug scaffolds has not previously been investigated. AIM OF THE STUDY: The aim of the study was to evaluate the potential of four South African Croton species extracts (Croton gratissimus, Croton pseudopulchellus, Croton sylvaticus, and Croton steenkampianus) for anti-inflammatory activity targeting the TLR4 signalling pathway and to assess the potential risk for hepatotoxicity and genotoxicity using an in vitro cellomics approach. MATERIAL AND METHODS: Leaf extracts of C. gratissimus, C. pseudopulchellus, C. sylvaticus and C. steenkampianus were prepared using methanol and chloroform (1:1, v/v). The anti-inflammatory activity was determined using LPS induced nitric oxide production in RAW 264.7 macrophages, while the hepatotoxicity and genotoxicity was evaluated using multi-parameter end point analysis in C3A and Vero cells, respectively. Mitochondrial membrane potential, mitochondrial mass, oxidative stress, lysosomal content and lipid accumulation were used as markers to assess the risk for hepatotoxicity. RESULTS: All four species attenuated nitric oxide production with negligible cytotoxicity. However, C. gratissimus yielded the most favorable profile. Cell density was significantly reduced in both C3A and Vero cells with the C. gratissimus extract providing a suitable toxicity profile amenable to further high content analysis. While there was no meaningful effect on mitochondrial dynamics, a strong dose dependent increase in lipid content, paralleled by an expansion of the lysosomal compartment, identifies a potential risk for steatosis. Risk for genotoxicity was investigated using the micronucleus assay which revealed a dose dependent increase in micronuclei formation. Changes in nuclear morphology and cell ploidy further strengthens the associated risk for genotoxicity and suggests the extract from C. gratissimus may function as an aneugen. Collectively, the data demonstrates that although the selected species possess anti-inflammatory components, the risk for possible hepatotoxic and genotoxic side effects may negate their prospect towards further drug development.


Assuntos
Anti-Inflamatórios , Doença Hepática Induzida por Substâncias e Drogas , Croton , Testes de Mutagenicidade/métodos , Extratos Vegetais , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacologia , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Chlorocebus aethiops , Etnofarmacologia/métodos , Técnicas In Vitro/métodos , Medicinas Tradicionais Africanas , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Folhas de Planta , Células RAW 264.7 , Medição de Risco/métodos , Células Vero
2.
J Ethnopharmacol ; 286: 114867, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34822956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In South Africa, medicinal plants have a history of traditional use, with many species used for treating wounds. The scientific basis of such uses remains largely unexplored. AIM OF THE STUDY: To screen South African plants used ethnomedicinally for wound healing based on their pro-angiogenic and wound healing activity, using transgenic zebrafish larvae and cell culture assays. MATERIALS AND METHODS: South African medicinal plants used for wound healing were chosen according to literature. Dried plant material was extracted using six solvents of varying polarities. Pro-angiogenesis was assessed in vivo by observing morphological changes in sub-intestinal vessels after crude extract treatment of transgenic zebrafish larvae with vasculature-specific expression of a green fluorescent protein. Subsequently, the in vitro anti-inflammatory, fibroblast proliferation and collagen production effects of the plant extracts that were active in the zebrafish angiogenesis assay were investigated using murine macrophage (RAW 264.7) and human fibroblast (MRHF) cell lines. RESULTS: Fourteen plants were extracted using six different solvents to yield 84 extracts and the non-toxic (n=72) were initially screened for pro-angiogenic activity in the zebrafish assay. Of these plant species, extracts of Lobostemon fruticosus, Scabiosa columbaria and Cotyledon orbiculata exhibited good activity in a concentration-dependent manner. All active extracts showed negligible in vitro toxicity using the MTT assay. Lobostemon fruticosus and Scabiosa columbaria extracts showed noteworthy anti-inflammatory activity in RAW 264.7 macrophages. The acetone extract of Lobostemon fruticosus stimulated the most collagen production at 122% above control values using the MRHF cell line, while all four of the selected extracts significantly stimulated cellular proliferation in vitro in the MRHF cell line. CONCLUSIONS: The screening of the selected plant species provided valuable preliminary information validating the use of some of the plants in traditional medicine used for wound healing in South Africa. This study is the first to discover through an evidence-based pharmacology approach the wound healing properties of such plant species using the zebrafish as an in vivo model.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Cicatrização/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Larva , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Medicinas Tradicionais Africanas , Camundongos , Células RAW 264.7 , África do Sul , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA