Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31883839

RESUMO

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Assuntos
Complemento C3/imunologia , Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Sinapses/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Callithrix , Linhagem Celular Tumoral , Complemento C3/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Complemento 3b/metabolismo
2.
Exp Neurol ; 305: 26-32, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29530711

RESUMO

Spinal cord epidural stimulation (SCS) represents a form of neuromodulation for the management of spasticity and pain. This technology has recently emerged as a new approach for potentially augmenting locomotion and voiding function in humans and rodents after spinal cord injury. However, the effect of SCS on micturition has not been studied extensively. Here, SCS was first applied as a direct stimulus onto individual segmental levels of the lumbar spinal cord in rats to map evoked external urethral sphincter (EUS) electromyography activity and SCS-induced voiding contractions. SCS of L2-3 inhibited EUS tonic activity, and SCS on L3 (L3/SCS) inhibited EUS tonic activity and elicited EUS bursting. In contrast, SCS of L1 and L4-6 evoked EUS tonic contractions, which resembled the urethral guarding reflex during bladder storage. Next, the effects of a bilateral pelvic nerve crush (PNC) injury on urodynamic function were examined at 14 days post-operatively. The PNC injury resulted in decreased voiding efficiency and maximum intravesical pressure, whereas the post-voiding residual volume was increased, suggestive of an underactive bladder. Finally, L3/SCS was performed to induce a voiding contraction and enable voiding in rats with a PNC injury. Voiding efficiency was significantly increased, and the residual volume was decreased by L3/SCS in rats after the PNC injury. We conclude that L3/SCS may be used to induce micturition reflexes in a partially filled bladder, reduce urethral resistance, and augment bladder emptying after PNC injury.


Assuntos
Estimulação da Medula Espinal/métodos , Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Uretra/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Feminino , Vértebras Lombares/inervação , Vértebras Lombares/fisiologia , Ratos , Ratos Sprague-Dawley , Uretra/inervação , Bexiga Urinária/inervação
3.
Am J Physiol Renal Physiol ; 308(9): F1032-40, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25694482

RESUMO

After spinal cord injury (SCI), the neurogenic bladder is observed to develop asynchronous bladder and external urethral sphincter (EUS) contractions in a condition known as detrusor-sphincter dyssnergia (DSD). Activation of the EUS spinal controlling center located at the upper lumbar spinal cord may contribute to reduce EUS dyssynergic contractions and decrease urethral resistance during voiding. However, this mechanism has not been well studied. This study aimed at evaluating the effects of epidural stimulation (EpS) over the spinal EUS controlling center (L3) in combination with a serotonergic receptor agonist on EUS relaxation in naive rats and chronic (6-8 wk) T8 SCI rats. Cystometrogram and EUS electromyography (EMG) were obtained before and after the intravenous administration of 5HT-1A receptor agonist and antagonist. The latency, duration, frequency, amplitude, and area under curve of EpS-evoked EUS EMG responses were analyzed. EpS on L3 evoked an inhibition of EUS tonic contraction and an excitation of EUS intermittent bursting/relaxation correlating with urine expulsion in intact rats. Combined with a 5HT-1A receptor agonist, EpS on L3 evoked a similar effect in chronic T8 SCI rats to reduce urethral contraction (resistance). This study examined the effect of facilitating the EUS spinal controlling center to switch between urine storage and voiding phases by using EpS and a serotonergic receptor agonist. This novel approach of applying EpS on the EUS controlling center modulates EUS contraction and relaxation as well as reduces urethral resistance during voiding in chronic SCI rats with DSD.


Assuntos
Terapia por Estimulação Elétrica/métodos , Traumatismos da Medula Espinal/complicações , Medula Espinal/fisiopatologia , Uretra/inervação , Bexiga Urinaria Neurogênica/terapia , Urodinâmica , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Vértebras Lombares , Ratos Sprague-Dawley , Reflexo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Uretra/efeitos dos fármacos , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/fisiopatologia , Urodinâmica/efeitos dos fármacos
4.
J Comp Neurol ; 513(2): 151-63, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19125408

RESUMO

To examine neuroanatomical mechanisms underlying fine motor control of the primate hand, adult rhesus monkeys underwent injections of biotinylated dextran amine (BDA) into the right motor cortex. Spinal axonal anatomy was examined using detailed serial-section reconstruction and modified stereological quantification. Eighty-seven percent of corticospinal tract (CST) axons decussated in the medullary pyramids and descended through the contralateral dorsolateral tract of the spinal cord. Eleven percent of CST axons projected through the dorsolateral CST ipsilateral to the hemisphere of origin, and 2% of axons projected through the ipsilateral ventromedial CST. Notably, corticospinal axons decussated extensively across the spinal cord midline. Remarkably, nearly 2-fold more CST axons decussated across the cervical spinal cord midline (approximately 12,000 axons) than were labeled in all descending components of the CST (approximately 6,700 axons). These findings suggest that CST axons extend multiple segmental collaterals. Furthermore, serial-section reconstructions revealed that individual axons descending in either the ipsilateral or contralateral dorsolateral CST can: 1) terminate in the gray matter ipsilateral to the hemisphere of origin; 2) terminate in the gray matter contralateral to the hemisphere of origin; or 3) branch in the spinal cord and terminate on both sides of the spinal cord. These results reveal a previously unappreciated degree of bilaterality and complexity of corticospinal projections in the primate spinal cord. This bilaterality is more extensive than that of the rat CST, and may resemble human CST organization. Thus, augmentation of sprouting of these extensive bilateral CST projections may provide a novel target for enhancing recovery after spinal cord injury.


Assuntos
Macaca mulatta/anatomia & histologia , Córtex Motor/anatomia & histologia , Terminações Nervosas , Fibras Nervosas , Vias Neurais/anatomia & histologia , Tratos Piramidais/anatomia & histologia , Medula Espinal/anatomia & histologia , Animais , Axônios , Biotina/administração & dosagem , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/administração & dosagem , Dextranos/metabolismo , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Masculino , Microinjeções , Córtex Motor/citologia , Vias Neurais/citologia , Tratos Piramidais/citologia , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA