Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Oncol ; 15(2): 462-472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107184

RESUMO

KRAS is a key oncogenic driver in lung adenocarcinoma (LUAD). Chromatin-remodeling gene SMARCA4 is comutated with KRAS in LUAD; however, the impact of SMARCA4 mutations on clinical outcome has not been adequately established. This study sought to shed light on the clinical significance of SMARCA4 mutations in LUAD. The association of SMARCA4 mutations with survival outcomes was interrogated in four independent cohorts totaling 564 patients: KRAS-mutant patients with LUAD who received nonimmunotherapy treatment from (a) The Cancer Genome Atlas (TCGA) and (b) the MSK-IMPACT Clinical Sequencing (MSK-CT) cohorts; and KRAS-mutant patients with LUAD who received immune checkpoint inhibitor-based immunotherapy treatment from (c) the MSK-IMPACT (MSK-IO) and (d) the Wake Forest Baptist Comprehensive Cancer Center (WFBCCC) immunotherapy cohorts. Of the patients receiving nonimmunotherapy treatment, in the TCGA cohort (n = 155), KRAS-mutant patients harboring SMARCA4 mutations (KS) showed poorer clinical outcome [P = 6e-04 for disease-free survival (DFS) and 0.031 for overall survival (OS), respectively], compared to KRAS-TP53 comutant (KP) and KRAS-only mutant (K) patients; in the MSK-CT cohort (n = 314), KS patients also exhibited shorter OS than KP (P = 0.03) or K (P = 0.022) patients. Of patients receiving immunotherapy, KS patients consistently exhibited the shortest progression-free survival (PFS; P = 0.0091) in the MSK-IO (n = 77), and the shortest PFS (P = 0.0026) and OS (P = 0.0014) in the WFBCCC (n = 18) cohorts, respectively. Therefore, mutations of SMARCA4 represent a genetic factor leading to adverse clinical outcome in lung adenocarcinoma treated by either nonimmunotherapy or immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Estudos de Coortes , DNA Helicases/genética , Imunoterapia , Neoplasias Pulmonares , Mutação , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
2.
Theranostics ; 7(11): 2914-2923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824725

RESUMO

Background: Cancers related to tobacco use and African-American ancestry are under-characterized by genomics. This gap in precision oncology research represents a major challenge in the health disparities in the United States. Methods: The Precision Oncology trial at the Wake Forest Baptist Comprehensive Cancer Center enrolled 431 cancer patients from March 2015 to May 2016. The composition of these patients consists of a high representation of tobacco-related cancers (e.g., lung, colorectal, and bladder) and African-American ancestry (13.5%). Tumors were sequenced to identify mutations to gain insight into genetic alterations associated with smoking and/or African-American ancestry. Results: Tobacco-related cancers exhibit a high mutational load. These tumors are characterized by high-frequency mutations in TP53, DNA damage repair genes (BRCA2 and ATM), and chromatin remodeling genes (the lysine methyltransferases KMT2D or MLL2, and KMT2C or MLL3). These tobacco-related cancers also exhibit augmented tumor heterogeneities. Smoking related genetic mutations were validated by The Cancer Genome Atlas dataset that includes 2,821 cases with known smoking status. The Wake Forest and The Cancer Genome Atlas cohorts (431 and 7,991 cases, respectively) revealed a significantly increased mutation rate in the TP53 gene in the African-American subgroup studied. Both cohorts also revealed 5 genes (e.g. CDK8) significantly amplified in the African-American population. Conclusions: These results provide strong evidence that tobacco is a major cause of genomic instability and heterogeneity in cancer. TP53 mutations and key oncogene amplifications emerge as key factors contributing to cancer outcome disparities among different racial/ethnic groups.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Pulmonares/patologia , Mutação , Fumar Tabaco/efeitos adversos , Neoplasias da Bexiga Urinária/patologia , Negro ou Afro-Americano , Humanos , Patologia Molecular , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA