Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972931

RESUMO

Sugarcane mill mud/filter cake is an activated sludge-like byproduct from the clarifier of a raw sugar production factory, where cane juice is heated to ≈90°C for 1-2 hr, after the removal of bagasse. Mill mud is enriched with organic carbon, nitrogen, and nutrient minerals; no prior report utilized 16S rRNA gene sequencing to characterize the microbial composition. Mill mud could be applied to agricultural fields as biofertilizer to replace or supplement chemical fertilizers, and as bio-stimulant to replenish microorganisms and organic carbon depleted by erosion and post-harvest field burning. However, mill mud has historically caused waste management challenges in the United States. This study reports on the chemical and microbial (16S rRNA) characteristics for mill muds of diverse origin and ages. Chemical signature (high phosphorus) distinguished mill mud from bagasse (high carbon to nitrogen (C/N) ratio) and soil (high pH) samples of diverse geographical/environmental origins. Bacterial alpha diversity of all sample types (mill mud, bagasse, and soil) was inversely correlated with C/N. Firmicutes dominated the microbial composition of fresh byproducts (mill mud and bagasse) as-produced within the operating factory. Upon aging and environmental exposure, the microbial community of the byproducts diversified to resemble that of soils, and became dominated by varying proportions of other phyla such as Acidobacteria, Chloroflexi, and Planctomyces. In summary, chemical properties allowed grouping of sample types (mill mud, bagasse, and soil-like), and microbial diversity analyses visualized aging caused by outdoor exposures including soil amendment and composting. Results suggest that a transient turnover of microbiome by amendments shifts towards more resilient population governed by the chemistry of bulk soil.


Assuntos
Saccharum , Solo , Carbono/análise , Nitrogênio/análise , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
2.
Curr Microbiol ; 79(4): 97, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150323

RESUMO

The bottom mud of mangroves contains numerous microbial groups that play an important role in the main ecological functions of the mangrove ecosystem. The diversity and functional and environmental factors related to microbial communities, in terms of the assembly process and in environmental adaptation of the abundance and rare bacterial communities in the mangrove ecosystem, have not been fully explored. We used 16S high-throughput sequencing and operational taxonomic unit analysis to compare the diversity and composition of bacterial communities in different tidal zones in the sediments of the Zhanjiang Gaoqiao Mangrove Nature Reserve, compare the ecological adaptation thresholds and phylogenetic signals of bacterial communities under different environmental gradients, and examine the factors affecting the composition of the bacterial community. The diversity of microbial species and structure and function of the mangrove sediments were affected by the environment, showing the trend: mid tide zone > climax zone > low tide zone. Organic matter content, oxygen content, pH, and total phosphorus were identified as important environmental factors determining the functional diversity of bacterial communities and survival, while pH influences species evolution. The abundant taxa showed a wider response threshold and stronger phylogenetic signals of ecological preference across environmental gradients compared to rare taxa. The abundant bacterial groups have broader environmental adaptability than rare bacterial groups, and different environmental factors affect different communities and functions in the mangrove ecological environment. These results elucidate the mechanism underlying the generation and maintenance of bacterial diversity in response to global environmental changes.


Assuntos
Microbiota , Áreas Alagadas , Bactérias/genética , Sedimentos Geológicos , Fósforo , Filogenia
3.
Arch Microbiol ; 193(2): 89-93, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21063867

RESUMO

In an effort to improve understanding of the role of Cu(II) in bacterial Mn(II) oxidation, a model Mn(II)-oxidizing bacterium, Leptothrix discophora SS-1, was grown in presence of toxic and non-toxic concentrations of Cu(II), Cd(II) and Mn(II). Mn(II)-oxidizing activity increased by 40% when cells were grown in the presence of 0.05 microM of Cu(II) and increased twofold at 0.18 microM Cu(II). Toxic levels of Cd(II) did not stimulate Mn(II) oxidizing activity, indicating that Mn(II) oxidation is not a response to metal toxicity. Stimulation by Cu(II) confirms the specific role of Cu(II) in Mn(II) oxidation. Comparison of transcript levels of the multicopper oxidase mofA gene in the presence and absence of added Cu(II) do not indicate a statistically significant change in mofA transcript levels in cultures supplemented with Cu(II). Thus, the exact role of Cu(II) in Mn(II) oxidation and its affect on mofA gene expression remain uncertain.


Assuntos
Cobre/farmacologia , Leptothrix/metabolismo , Manganês/metabolismo , Leptothrix/efeitos dos fármacos , Leptothrix/genética , Oxirredução , Oxirredutases/genética
4.
Appl Environ Microbiol ; 75(5): 1229-35, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114505

RESUMO

A common form of biocatalysis of Mn(II) oxidation results in the formation of biogenic Mn(III, IV) oxides and is a key reaction in the geochemical cycling of Mn. In this study, we grew the model Mn(II)-oxidizing bacterium Leptothrix discophora SS-1 in media with limited iron (0.1 microM iron/5.8 mM pyruvate) and sufficient iron (0.2 microM iron/5.8 mM pyruvate). The influence of iron on the rate of extracellular Mn(II) oxidation was evaluated. Cultures in which cell growth was limited by iron exhibited reduced abilities to oxidize Mn(II) compared to cultures in medium with sufficient iron. While the extracellular Mn(II)-oxidizing factor (MOF) is thought to be a putative multicopper oxidase, Mn(II) oxidation in the presence of zero added Cu(II) was detected and the decrease in the observed Mn(II) oxidation rate in iron-limited cultures was not relieved when the medium was supplemented with Cu(II). The decline of Mn(II) oxidation under iron-limited conditions was not accompanied by siderophore production and is unlikely to be an artifact of siderophore complex formation with Mn(III). The temporal variations in mofA gene transcript levels under conditions of limited and abundant iron were similar, indicating that iron limitation did not interfere with the transcription of the mofA gene. Our quantitative PCR results provide a step forward in understanding the regulation of Mn(II) oxidation. The mechanistic role of iron in Mn(II) oxidation is uncertain; the data are consistent with a direct requirement for iron as a component of the MOF or an indirect effect of iron resulting from the limitation of one of many cellular functions requiring iron.


Assuntos
Ferro/metabolismo , Leptothrix/metabolismo , Compostos de Manganês/metabolismo , Cobre/metabolismo , Meios de Cultura/química , Oxirredução , Sideróforos/biossíntese
5.
J Chem Ecol ; 31(2): 247-65, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15856782

RESUMO

Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.


Assuntos
Artemisia/química , Monoterpenos/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/isolamento & purificação , Compostos Bicíclicos com Pontes/toxicidade , Cânfora/isolamento & purificação , Cânfora/toxicidade , Cicloexanóis/isolamento & purificação , Cicloexanóis/toxicidade , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/toxicidade , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Dinâmica Populacional , Sementes/crescimento & desenvolvimento , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA