Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 109(17): 2682-2690.e5, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314698

RESUMO

Slow-wave sleep is characterized by near-synchronous alternation of active Up states and quiescent Down states in the neocortex. Although the cortex itself can maintain these oscillations, the full expression of Up-Down states requires intact thalamocortical circuits. Sensory thalamic input can drive the cortex into an Up state. Here we show that midline thalamic neurons terminate Up states synchronously across cortical areas. Combining local field potential, single-unit, and patch-clamp recordings in conjunction with optogenetic stimulation and silencing in mice in vivo, we report that thalamic input mediates Down transition via activation of layer 1 neurogliaform inhibitory neurons acting on GABAB receptors. These results strengthen the evidence that thalamocortical interactions are essential for the full expression of slow-wave sleep, show that Down transition is an active process mediated by cortical GABAB receptors, and demonstrate that thalamus synchronizes Down transitions across cortical areas during natural slow-wave sleep.


Assuntos
Interneurônios/fisiologia , Neocórtex/fisiologia , Receptores de GABA-B/metabolismo , Sono de Ondas Lentas/fisiologia , Tálamo/fisiologia , Animais , Potenciais Evocados , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Tálamo/citologia , Tálamo/metabolismo
2.
Cereb Cortex ; 29(7): 2815-2831, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30059985

RESUMO

Sensory processing relies on fast detection of changes in environment, as well as integration of contextual cues over time. The mechanisms by which local circuits of the cerebral cortex simultaneously perform these opposite processes remain obscure. Thalamic "specific" nuclei relay sensory information, whereas "nonspecific" nuclei convey information on the environmental and behavioral contexts. We expressed channelrhodopsin in the ventrobasal specific (sensory) or the rhomboid nonspecific (contextual) thalamic nuclei. By selectively activating each thalamic pathway, we found that nonspecific inputs powerfully activate adapting (slow-responding) interneurons but weakly connect fast-spiking interneurons, whereas specific inputs exhibit opposite interneuron preference. Specific inputs thereby induce rapid feedforward inhibition that limits response duration, whereas, in the same cortical area, nonspecific inputs elicit delayed feedforward inhibition that enables lasting recurrent excitation. Using a mean field model, we confirm that cortical response dynamics depends on the type of interneuron targeted by thalamocortical inputs and show that efficient recruitment of adapting interneurons prolongs the cortical response and allows the summation of sensory and contextual inputs. Hence, target choice between slow- and fast-responding inhibitory neurons endows cortical networks with a simple computational solution to perform both sensory detection and integration.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA