Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncotarget ; 9(11): 10054-10068, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515790

RESUMO

Insufficient supplementation with the micronutrient selenium and persistent hepatic inflammation predispose to hepatocellular carcinoma (HCC). Inflammation-associated reactive oxygen species attack membrane lipids and form lipid hydroperoxides able to propagate oxidative hepatic damage. Selenium-containing enzyme glutathione peroxidase 4 (GPx4) antagonizes this damage by reducing lipid hydroperoxides to respective hydroxides. However, the role of GPx4 in HCC remains elusive. We generated two human HCC cell lines with stable overexpression of GPx4, performed xenotransplantation into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) host mice and characterized the tumors formed. The experimental data were verified using gene expression data from two independent HCC patient cohorts. GPx4 overexpression protected from oxidative stress and reduced intracellular free radical level. GPx4-overexpressing cells displayed impaired tumor growth, reduced proliferation, altered angiogenesis and decreased expression of clinically relevant cytokine interleukin-8 and C-reactive protein. Moreover, GPx4 overexpression impaired migration of endothelial cells in vitro, and enhanced expression of thrombospondin 1, an endogenous inhibitor of angiogenesis. In patients, GPx4 expression in tumors positively correlated with survival and was linked to pathways which regulate cell proliferation, motility, tissue remodelling, immune response and M1 macrophage polarization. The patient data largely confirmed experimental findings especially in a subclass of poor prognosis tumors with high proliferation. GPx4 suppresses formation and progression of HCC by inhibition of angiogenesis and tumor cell proliferation as well as by immune-mediated mechanisms. Modification of GPx4 expression may represent a novel tool for HCC prevention or treatment.

2.
J Hepatol ; 57(3): 592-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22634341

RESUMO

BACKGROUND & AIMS: The combination of erlotinib with sorafenib is currently being investigated in a phase III RCT. We studied the effect of erlotinib and sorafenib on HCC in a preclinical model. METHODS: The Morris Hepatoma (MH) and HepG2 cells were treated in vitro with sorafenib (1-10 µM) and erlotinib (1-5 µM) and evaluated for tumor cell viability, apoptosis, and target regulation. Antiangiogenic effects were studied by measuring VEGF levels, endothelial cell viability, apoptosis, migration, and the aortic ring assay. In vivo, MH cells were implanted into the liver of syngeneic rats and treated with vehicle, sorafenib 5-10mg/kg, erlotinib 10mg/kg, and respective combinations. RESULTS: In vitro, erlotinib downregulated p-ERK but showed no significant effect on tumor cell viability in MH and HEPG2 cells. Despite a similar target regulation, sorafenib significantly reduced cell viability of HCC cells by induction of apoptosis, in a dose-dependent manner (11 ± 5%; 20 ± 10%; 51 ± 5% for sorafenib 1, 5, 10 µM). No additional effect was observed upon combination with erlotinib. Of note, erlotinib treatment resulted in endothelial cell migration and vascular sprouting of aortic rings through induction of VEGF mRNA and protein levels in endothelial and tumor cells, which was blocked by sorafenib. In vivo, erlotinib had no single agent antitumor activity, raised serum-VEGF levels, and lacked a synergistic effect in combination with sorafenib. CONCLUSIONS: Erlotinib had no antitumor effect on HCC in vitro nor in vivo, but induced VEGF, which may reflect a resistance mechanism to erlotinib monotherapy. No improvement of sorafenib efficacy was observed upon combination with erlotinib.


Assuntos
Benzenossulfonatos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Quinazolinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Carcinoma Hepatocelular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Sorafenibe , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Hepatology ; 55(4): 1112-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22105228

RESUMO

UNLABELLED: Activation of the activator protein 1 (AP-1) transcription factor as well as increased serum levels of vascular endothelial growth factor (VEGF) and interleukin (IL)-8 predict poor prognosis of patients with hepatocellular carcinomas (HCCs). Moreover, HCC patients display reduced selenium levels, which may cause lipid peroxidation and oxidative stress because selenium is an essential component of antioxidative glutathione peroxidases (GPx). We hypothesized that selenium-lipid peroxide antagonism controls the above prognostic markers and tumor growth. (1) In human HCC cell lines (HCC-1.2, HCC-3, and SNU398) linoleic acid peroxide (LOOH) and other prooxidants enhanced the expression of VEGF and IL-8. LOOH up-regulated AP-1 activation. Selenium inhibited these effects. This inhibition was mediated by glutathione peroxidase 4 (GPx4), which preferentially degrades lipid peroxides. Selenium enhanced GPx4 expression and total GPx activity, while knock-down of GPx4 by small interfering RNA (siRNA) increased VEGF, and IL-8 expression. (2) These results were confirmed in a rat hepatocarcinogenesis model. Selenium treatment during tumor promotion increased hepatic GPx4 expression and reduced the expression of VEGF and of the AP-1 component c-fos as well as nodule growth. (3) In HCC patients, increased levels of LOOH-related antibodies (LOOH-Ab) were found, suggesting enhanced LOOH formation. LOOH-Ab correlated with serum VEGF and IL-8 and with AP-1 activation in HCC tissue. In contrast, selenium inversely correlated with VEGF, IL-8, and HCC size (the latter only for tumors smaller than 3 cm). CONCLUSION: Reduced selenium levels result in accumulation of lipid peroxides. This leads to enhanced AP-1 activation and consequently to elevated expression of VEGF and IL-8, which accelerate the growth of HCC. Selenium supplementation could be considered for investigation as a strategy for chemoprevention or additional therapy of early HCC in patients with low selenium levels.


Assuntos
Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Ácido Linoleico/farmacologia , Peróxidos Lipídicos/farmacologia , Neoplasias Hepáticas/patologia , Selênio/farmacologia , Adulto , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Cultivadas , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Interleucina-8/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos , Ratos Endogâmicos F344 , Fator de Transcrição AP-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Clin Endocrinol Metab ; 91(11): 4571-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16954161

RESUMO

BACKGROUND: In vitro and in vivo studies have shown that dendritic cells (DCs) can stimulate antitumor T cell responses against medullary thyroid carcinoma (MTC). However, despite promising results in selected cases, the clinical efficacy of DC immunotherapy in patients with MTC has been limited. Recently, it has been demonstrated in mice that heat shock enhances the capacity of bone-marrow-derived DCs to stimulate antigen-specific T cells. The aim of our investigations was to evaluate whether heat shock also increases the capacity of human monocyte-derived DCs to stimulate antitumor T cell responses against MTC tumor cells. METHODS: DCs from six patients with metastatic MTC were pulsed with tumor lysate derived from allogeneic MTC tumor cells and were heat shocked for 12 h at 40 C or kept at 37 C. Thereafter, the DCs were matured and cocultured with T cells. Finally, the cytotoxic activity of T cells against MTC tumor cells was measured in vitro. RESULTS: In all patient samples, cytotoxic T cell responses against MTC tumor cells could be induced. Notably, heat-shocked DCs were more potent stimulators of cytotoxic T cell responses than control DCs, with T cells stimulated with heat-shocked DCs displaying a significantly increased cytotoxic activity against MTC tumor cells as compared with T cells stimulated with control DCs. In none of the experiments was a cytotoxic T cell response against unrelated pancreatic tumor cells (PANC-1) observed, using both control and heat-shocked DCs. CONCLUSIONS: Our study shows that heat-shocking DCs may be a valuable strategy to increase the immunostimulatory capacity of DCs used for immunotherapy of MTC.


Assuntos
Carcinoma Medular/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Hipertermia Induzida/métodos , Linfócitos T Citotóxicos/metabolismo , Neoplasias da Glândula Tireoide/imunologia , Adulto , Idoso , Antígenos de Superfície/metabolismo , Carcinoma Medular/patologia , Carcinoma Medular/terapia , Diferenciação Celular , Extratos Celulares/imunologia , Feminino , Genes MHC Classe I , Antígenos HLA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico , Humanos , Imunoterapia/métodos , Técnicas In Vitro , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA