Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 58(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35056324

RESUMO

Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/complicações , Carbono , Ácido Fólico , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
2.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476142

RESUMO

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/prevenção & controle , Dieta Ocidental/efeitos adversos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Miocardite/prevenção & controle , Miocárdio/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fibrose , Camundongos Endogâmicos C57BL , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/fisiopatologia , Miocárdio/ultraestrutura , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Pharmacology ; 82(3): 201-13, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18810244

RESUMO

BACKGROUND/AIMS: Sodium thiosulfate (STS) has been shown to be an antioxidant and calcium solubilizer, but the possible role of STS in dysfunctional ventricles remains unknown. Here, we assessed the effects of STS in the failing heart. METHODS: Heart failure was created by an arteriovenous fistula (AVF). Mice were divided into 4 groups: sham, AVF, sham + STS, and AVF + STS. STS (3 mg/ml) was supplemented with drinking water for 6 weeks in the appropriate surgery groups after surgery. RESULTS: M-mode echocardiograms showed ventricular contractile dysfunction with reduced aortic blood flow in AVF mice, whereas STS treatment prevented the decline in cardiac function. Ventricular collagen, MMP-2 and -9, and TIMP-1 were robustly increased with a decreasing trend in adenylate cyclase VI expression; however, STS supplementation reversed these effects in AVF mice. Among 2 enzymes that produce endogenous hydrogen sulfide (H(2)S), cystathionine-gamma-lyase (CSE) expression was attenuated in AVF mice with no changes in cystathionine-beta-synthase (CBS) expression. In addition, reduced production of H(2)S in AVF ventricular tissue was normalized with STS supplementation. Moreover, cardiac tissues were more responsive to H(2)S when AVF mice were supplemented with STS compared to AVF alone. CONCLUSIONS: These results suggested that STS modulated cardiac dysfunction and the extracellular matrix, in part, by increasing ventricular H(2)S generation.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Sulfeto de Hidrogênio/metabolismo , Tiossulfatos/farmacologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Aorta/fisiopatologia , Fístula Arteriovenosa , Doença Crônica , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Cistationina gama-Liase/efeitos dos fármacos , Cistationina gama-Liase/metabolismo , Ecocardiografia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/metabolismo
4.
Nutr J ; 3: 4, 2004 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15134582

RESUMO

Homocysteine has emerged as a novel independent marker of risk for the development of cardiovascular disease over the past three decades. Additionally, there is a graded mortality risk associated with an elevated fasting plasma total homocysteine (tHcy). Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are now considered to be a strong coronary heart disease (CHD) risk enhancer and a CHD risk equivalent respectively. Hyperhomocysteinemia (HHcy) in patients with MS and T2DM would be expected to share a similar prevalence to the general population of five to seven percent and of even greater importance is: Declining glomerular filtration and overt diabetic nephropathy is a major determinant of tHcy elevation in MS and T2DM. There are multiple metabolic toxicities resulting in an excess of reactive oxygen species associated with MS, T2DM, and the accelerated atherosclerosis (atheroscleropathy). HHcy is associated with an increased risk of cardiovascular disease, and its individual role and how it interacts with the other multiple toxicities are presented.The water-soluble B vitamins (especially folate and cobalamin-vitamin B12) have been shown to lower HHcy. The absence of the cystathionine beta synthase enzyme in human vascular cells contributes to the importance of a dual role of folic acid in lowering tHcy through remethylation, as well as, its action of being an electron and hydrogen donor to the essential cofactor tetrahydrobiopterin. This folate shuttle facilitates the important recoupling of the uncoupled endothelial nitric oxide synthase enzyme reaction and may restore the synthesis of the omnipotent endothelial nitric oxide to the vasculature.

5.
Cardiovasc Diabetol ; 2: 2, 2003 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-12628022

RESUMO

BACKGROUND: Cardiovascular disease accounts for at least 85 percent of deaths for those patients with type 2 diabetes mellitus (T2DM). Additionally, 75 percent of these deaths are due to ischemic heart disease. HYPOTHESIS: Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. TESTING OF THE HYPOTHESIS: The vulnerable three arms of the eNOS reaction responsible for the generation of eNO is discussed in relation to the hypothesis: (1) The L-arginine substrate. (2) The eNOS enzyme. (3) The BH4 cofactor. IMPLICATIONS OF THE HYPOTHESIS: If we view T2DM as a vascular disease initially with a later manifestation of hyperglycemia, we may be able to better understand and modify the multiple toxicities associated with insulin resistance, metabolic syndrome, prediabetes, overt T2DM, and accelerated atherosclerosis (atheroscleropathy). The importance of endothelial nitric oxide synthase, endothelial nitric oxide, tetrahydrobiopterin (BH4), L-arginine, and redox stress are discussed in relation to endothelial cell dysfunction and the development and progression of atheroscleropathy and T2DM. In addition to the standard therapies to restore endothelial cell dysfunction and stabilization of vulnerable atherosclerotic plaques, this article will discuss the importance of folic acid (5MTHF) supplementation in this complex devastating disease process. Atheroscleropathy and hyperglycemia could be early and late manifestations, respectively, in the natural progressive history of T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA