Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cochrane Database Syst Rev ; 3: CD009384, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36994923

RESUMO

BACKGROUND: Zinc deficiency is prevalent in low- and middle-income countries, and is considered a significant risk factor for morbidity, mortality, and linear growth failure. The effectiveness of preventive zinc supplementation in reducing prevalence of zinc deficiency needs to be assessed. OBJECTIVES: To assess the effects of zinc supplementation for preventing mortality and morbidity, and for promoting growth, in children aged 6 months to 12 years. SEARCH METHODS: A previous version of this review was published in 2014. In this update, we searched CENTRAL, MEDLINE, Embase, five other databases, and one trials register up to February 2022, together with reference checking and contact with study authors to identify additional studies. SELECTION CRITERIA: Randomized controlled trials (RCTs) of preventive zinc supplementation in children aged 6 months to 12 years compared with no intervention, a placebo, or a waiting list control. We excluded hospitalized children and children with chronic diseases or conditions. We excluded food fortification or intake, sprinkles, and therapeutic interventions. DATA COLLECTION AND ANALYSIS: Two review authors screened studies, extracted data, and assessed the risk of bias. We contacted study authors for missing information and used GRADE to assess the certainty of evidence. The primary outcomes of this review were all-cause mortality; and cause-specific mortality, due to all-cause diarrhea, lower respiratory tract infection (LRTI, including pneumonia), and malaria. We also collected information on a number of secondary outcomes, such as those related to diarrhea and LRTI morbidity, growth outcomes and serum levels of micronutrients, and adverse events. MAIN RESULTS: We included 16 new studies in this review, resulting in a total of 96 RCTs with 219,584 eligible participants. The included studies were conducted in 34 countries; 87 of them in low- or middle-income countries. Most of the children included in this review were under five years of age. The intervention was delivered most commonly in the form of syrup as zinc sulfate, and the most common dose was between 10 mg and 15 mg daily. The median duration of follow-up was 26 weeks. We did not consider that the evidence for the key analyses of morbidity and mortality outcomes was affected by risk of bias. High-certainty evidence showed little to no difference in all-cause mortality with preventive zinc supplementation compared to no zinc (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.84 to 1.03; 16 studies, 17 comparisons, 143,474 participants). Moderate-certainty evidence showed that preventive zinc supplementation compared to no zinc likely results in little to no difference in mortality due to all-cause diarrhea (RR 0.95, 95% CI 0.69 to 1.31; 4 studies, 132,321 participants); but probably reduces mortality due to LRTI (RR 0.86, 95% CI 0.64 to 1.15; 3 studies, 132,063 participants) and mortality due to malaria (RR 0.90, 95% CI 0.77 to 1.06; 2 studies, 42,818 participants); however, the confidence intervals around the summary estimates for these outcomes were wide, and we could not rule out a possibility of increased risk of mortality. Preventive zinc supplementation likely reduces the incidence of all-cause diarrhea (RR 0.91, 95% CI 0.90 to 0.93; 39 studies, 19,468 participants; moderate-certainty evidence) but results in little to no difference in morbidity due to LRTI (RR 1.01, 95% CI 0.95 to 1.08; 19 studies, 10,555 participants; high-certainty evidence) compared to no zinc. There was moderate-certainty evidence that preventive zinc supplementation likely leads to a slight increase in height (standardized mean difference (SMD) 0.12, 95% CI 0.09 to 0.14; 74 studies, 20,720 participants). Zinc supplementation was associated with an increase in the number of participants with at least one vomiting episode (RR 1.29, 95% CI 1.14 to 1.46; 5 studies, 35,192 participants; high-certainty evidence). We report a number of other outcomes, including the effect of zinc supplementation on weight and serum markers such as zinc, hemoglobin, iron, copper, etc. We also performed a number of subgroup analyses and there was a consistent finding for a number of outcomes that co-supplementation of zinc with iron decreased the beneficial effect of zinc. AUTHORS' CONCLUSIONS: Even though we included 16 new studies in this update, the overall conclusions of the review remain unchanged. Zinc supplementation might help prevent episodes of diarrhea and improve growth slightly, particularly in children aged 6 months to 12 years of age. The benefits of preventive zinc supplementation may outweigh the harms in regions where the risk of zinc deficiency is relatively high.


Assuntos
Malária , Desnutrição , Infecções Respiratórias , Criança , Pré-Escolar , Humanos , Diarreia/epidemiologia , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Suplementos Nutricionais , Ferro , Desnutrição/prevenção & controle , Minerais , Morbidade , Zinco/uso terapêutico
2.
Cochrane Database Syst Rev ; 3: CD008524, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294044

RESUMO

BACKGROUND: Vitamin A deficiency (VAD) is a major public health problem in low- and middle-income countries, affecting 190 million children under five years of age and leading to many adverse health consequences, including death. Based on prior evidence and a previous version of this review, the World Health Organization has continued to recommend vitamin A supplementation (VAS) for children aged 6 to 59 months. The last version of this review was published in 2017, and this is an updated version of that review. OBJECTIVES: To assess the effects of vitamin A supplementation (VAS) for preventing morbidity and mortality in children aged six months to five years. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, six other databases, and two trials registers up to March 2021. We also checked reference lists and contacted relevant organisations and researchers to identify additional studies. SELECTION CRITERIA: Randomised controlled trials (RCTs) and cluster-RCTs evaluating the effect of synthetic VAS in children aged six months to five years living in the community. We excluded studies involving children in hospital and children with disease or infection. We also excluded studies evaluating the effects of food fortification, consumption of vitamin A rich foods, or beta-carotene supplementation. DATA COLLECTION AND ANALYSIS: For this update, two review authors independently assessed studies for inclusion resolving discrepancies by discussion. We performed meta-analyses for outcomes, including all-cause and cause-specific mortality, disease, vision, and side effects. We used the GRADE approach to assess the quality of the evidence. MAIN RESULTS: The updated search identified no new RCTs. We identified 47 studies, involving approximately 1,223,856 children. Studies were set in 19 countries: 30 (63%) in Asia, 16 of these in India; 8 (17%) in Africa; 7 (15%) in Latin America, and 2 (4%) in Australia. About one-third of the studies were in urban/periurban settings, and half were in rural settings; the remaining studies did not clearly report settings. Most studies included equal numbers of girls and boys and lasted about one year. The mean age of the children was about 33 months. The included studies were at variable overall risk of bias; however, evidence for the primary outcome was at low risk of bias. A meta-analysis for all-cause mortality included 19 trials (1,202,382 children). At longest follow-up, there was a 12% observed reduction in the risk of all-cause mortality for VAS compared with control using a fixed-effect model (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.83 to 0.93; high-certainty evidence). Nine trials reported mortality due to diarrhoea and showed a 12% overall reduction for VAS (RR 0.88, 95% CI 0.79 to 0.98; 1,098,538 children; high-certainty evidence). There was no evidence of a difference for VAS on mortality due to measles (RR 0.88, 95% CI 0.69 to 1.11; 6 studies, 1,088,261 children; low-certainty evidence), respiratory disease (RR 0.98, 95% CI 0.86 to 1.12; 9 studies, 1,098,538 children; low-certainty evidence), and meningitis. VAS reduced the incidence of diarrhoea (RR 0.85, 95% CI 0.82 to 0.87; 15 studies, 77,946 children; low-certainty evidence), measles (RR 0.50, 95% CI 0.37 to 0.67; 6 studies, 19,566 children; moderate-certainty evidence), Bitot's spots (RR 0.42, 95% CI 0.33 to 0.53; 5 studies, 1,063,278 children; moderate-certainty evidence), night blindness (RR 0.32, 95% CI 0.21 to 0.50; 2 studies, 22,972 children; moderate-certainty evidence), and VAD (RR 0.71, 95% CI 0.65 to 0.78; 4 studies, 2262 children, moderate-certainty evidence). However, there was no evidence of a difference on incidence of respiratory disease (RR 0.99, 95% CI 0.92 to 1.06; 11 studies, 27,540 children; low-certainty evidence) or hospitalisations due to diarrhoea or pneumonia. There was an increased risk of vomiting within the first 48 hours of VAS (RR 1.97, 95% CI 1.44 to 2.69; 4 studies, 10,541 children; moderate-certainty evidence). AUTHORS' CONCLUSIONS: This update identified no new eligible studies and the conclusions remain the same. VAS is associated with a clinically meaningful reduction in morbidity and mortality in children. Further placebo-controlled trials of VAS in children between six months and five years of age would not change the conclusions of this review, although studies that compare different doses and delivery mechanisms are needed. In populations with documented VAD, it would be unethical to conduct placebo-controlled trials.


Assuntos
Sarampo , Transtornos Respiratórios , Deficiência de Vitamina A , Criança , Pré-Escolar , Diarreia/induzido quimicamente , Suplementos Nutricionais , Feminino , Humanos , Masculino , Sarampo/induzido quimicamente , Sarampo/complicações , Morbidade , Vitamina A/uso terapêutico , Deficiência de Vitamina A/epidemiologia , Deficiência de Vitamina A/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA