Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 181: 107425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771710

RESUMO

Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues. Here we tested whether VNS can enhance extinction of olfactory fear and promote extinction generalization across auditory and olfactory sensory modalities. Male Sprague Dawley rats were implanted with a stimulating cuff on the cervical vagus nerve. Rats then received two days of fear conditioning where olfactory (amyl acetate odor) and auditory (9 kHz tones) stimuli were concomitantly paired with footshock. Twenty-four hours later, rats were given three days of sham or VNS-paired extinction (5 stimulations, 30-sec trains at 0.4 mA) overlapping with presentation of either the olfactory or the auditory stimulus. Two days later, rats were given an extinction retention test where avoidance of the olfactory stimulus or freezing to the auditory stimulus were measured. VNS-paired with exposure to the olfactory stimulus during extinction reduced avoidance of the odor in the retention test. VNS-paired with exposure to the auditory stimulus during extinction also decreased avoidance of the olfactory cue, and VNS paired with exposure to the olfactory stimulus during extinction reduced freezing when the auditory stimulus was presented in the retention test. These results indicate that VNS enhances extinction of olfactory fear and promotes extinction generalization across different sensory modalities. Extinction generalization induced by VNS may therefore improve outcomes of exposure-based therapies.


Assuntos
Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Generalização Psicológica/fisiologia , Estimulação do Nervo Vago/métodos , Estimulação Acústica , Animais , Aprendizagem da Esquiva/fisiologia , Medo , Terapia Implosiva , Masculino , Estimulação Física , Ratos , Ratos Sprague-Dawley , Olfato , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/terapia
2.
PLoS One ; 14(11): e0215191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31738766

RESUMO

The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve. Here we tested the hypothesis that flat electrodes will require higher current amplitude to activate all large-diameter fibers throughout the whole cross-section of a nerve than circumferential designs. Computational modeling and in vivo experiments were performed to evaluate fiber recruitment in different nerves and different species using a variety of electrode designs. Initial results demonstrated similar fiber recruitment in the rat vagus and sciatic nerves with a standard circumferential cuff electrode and a cuff electrode modified to approximate a flat configuration. Follow up experiments comparing true flat electrodes to circumferential electrodes on the rabbit sciatic nerve confirmed that fiber recruitment was equivalent between the two designs. These findings demonstrate that flat electrodes represent a viable design for nerve stimulation that may provide advantages over the current circumferential designs for applications in which the goal is uniform activation of all fascicles within the nerve.


Assuntos
Eletrodos Implantados , Estimulação do Nervo Vago/instrumentação , Animais , Simulação por Computador , Terapia por Estimulação Elétrica/instrumentação , Desenho de Equipamento , Feminino , Humanos , Masculino , Modelos Neurológicos , Coelhos , Ratos , Ratos Sprague-Dawley , Recrutamento Neurofisiológico , Nervo Isquiático/fisiologia , Nervo Vago/fisiologia
3.
J Neurosci Methods ; 320: 26-36, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849436

RESUMO

BACKGROUND: The growing use of neuromodulation techniques to treat neurological disorders has motivated efforts to improve on the safety and reliability of implantable nerve stimulators. NEW METHOD: The present study describes the ReStore system, a miniature, implantable wireless nerve stimulator system that has no battery or leads and is constructed using commercial components and processes. The implant can be programmed wirelessly to deliver charge-balanced, biphasic current pulses of varying amplitudes, pulse widths, frequencies, and train durations. Here, we describe bench and in vivo testing to evaluate the operational performance and efficacy of nerve recruitment. Additionally, we also provide results from a large-animal chronic active stimulation study assessing the long-term biocompatibility of the device. RESULTS: The results show that the system can reliably deliver accurate stimulation pulses through a range of different loads. Tests of nerve recruitment demonstrate that the implant can effectively activate peripheral nerves, even after accelerated aging and post-chronic implantation. Biocompatibility and hermeticity tests provide an initial indication that the implant will be safe for use in humans. COMPARISON WITH EXISTING METHOD(S): Most commercially available nerve stimulators include a battery and wire leads which often require subsequent surgeries to address failures in these components. Though miniaturized battery-less stimulators have been prototyped in academic labs, they are often constructed using custom components and processes that hinder clinical translation. CONCLUSIONS: The results from testing the performance and safety of the ReStore system establish its potential to advance the field of peripheral neuromodulation.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/normas , Neuroestimuladores Implantáveis/normas , Nervos Periféricos , Animais , Modelos Animais de Doenças , Cães , Desenho de Equipamento , Feminino , Humanos , Masculino , Coelhos , Nervo Isquiático , Telemetria/instrumentação , Telemetria/normas , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/normas
4.
Neuroscience ; 388: 239-247, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063940

RESUMO

Pairing vagus nerve stimulation (VNS) with movements or sounds can direct robust plasticity in motor or auditory cortex, respectively. The degree of map plasticity is influenced by the intensity and pulse width of VNS, number of VNS-event pairings, and the interval between each pairing. It is likely that these parameters interact, influencing optimal implementation of VNS pairing protocols. We varied VNS intensity, number of stimulations, and inter-stimulation interval (ISI) to test for interactions among these parameters. Rats were implanted with a vagus nerve stimulating cuff and randomly assigned to one of three treatment groups to receive 20 days of VNS paired with a 9-kHz tone: (1) Fast VNS: 50 daily pairings of 400-µA VNS with a 30-s ISI; (2) Dispersed VNS: 50 daily pairings of 400-µA VNS with a 180-s ISI; and (3) Standard VNS: 300 daily pairings of 800-µA VNS with a 30-s ISI. Following 20 days of VNS-tone pairing, multi-unit recordings were conducted in primary auditory cortex (A1) and receptive field properties were analyzed. Increasing ISI (Dispersed VNS) did not lead to an enhancement of cortical plasticity. Reducing the current intensity and number of stimulations (Fast VNS) resulted in robust cortical plasticity, using 6 times fewer VNS pairings than the Standard protocol. These findings reveal an interaction between current intensity, stimulation number, and ISI and identify a novel VNS paradigm that is substantially more efficient than the previous standard paradigm.


Assuntos
Córtex Auditivo/fisiologia , Plasticidade Neuronal , Estimulação do Nervo Vago/métodos , Estimulação Acústica , Animais , Feminino , Plasticidade Neuronal/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley
5.
J Neurophysiol ; 100(5): 2615-26, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18784272

RESUMO

Despite the pronounced neurological deficits associated with mental retardation and autism, it is unknown if altered neocortical circuit function occurs in these prevalent disorders. Here we demonstrate specific alterations in local synaptic connections, membrane excitability, and circuit activity of defined neuron types in sensory neocortex of the mouse model of Fragile X Syndrome-the Fmr1 knockout (KO). Overall, these alterations result in hyperexcitability of neocortical circuits in the Fmr1 KO. Specifically, we observe a substantial deficit in local excitatory drive ( approximately 50%) targeting fast-spiking (FS) inhibitory neurons in layer 4 of somatosensory, barrel cortex. This persists until at least 4 wk of age suggesting it may be permanent. In contrast, monosynaptic GABAergic synaptic transmission was unaffected. Overall, these changes indicate that local feedback inhibition in neocortical layer 4 is severely impaired in the Fmr1 KO mouse. An increase in the intrinsic membrane excitability of excitatory neurons may further contribute to hyperexcitability of cortical networks. In support of this idea, persistent neocortical circuit activity, or UP states, elicited by thalamic stimulation was longer in duration in the Fmr1 KO mouse. In addition, network inhibition during the UP state was less synchronous, including a 14% decrease in synchrony in the gamma frequency range (30-80 Hz). These circuit changes may be involved in sensory stimulus hypersensitivity, epilepsy, and cognitive impairment associated with Fragile X and autism.


Assuntos
Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Neocórtex/patologia , Rede Nervosa/patologia , Inibição Neural/fisiologia , Potenciais de Ação/genética , Animais , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Retroalimentação , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA