RESUMO
A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.
Assuntos
Desnitrificação , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Modelos TeóricosRESUMO
A lab-scale granular sludge sequencing batch reactor (G-SBR) system was operated using synthetic wastewater. The total nitrogen removal efficiency of 85% was obtained together with the achievement of complete total phosphorus removal with average granule diameter of 400 µm. Dual-step nitrification and denitrification model with fixed biofilm thickness was used for performance analysis. The denitrification mode only contributed to TN removal with 25% which can be calculated with process stoichiometry. The remaining nitrogen removal could be explained by simulating simultaneous nitrification and denitrification which was responsible for 75% denitrification during aerobic period. In addition, low NO3- concentration at the beginning of the fill period provided advantage for securing a prolonged anaerobic period for enhanced biological phosphorus removal (EBPR). The model parameters of boundary layer thickness (zBL = 50 µm) and half-saturation of O2 for nitrite-oxidizing bacteria (KO2,NOB = 0.5 gO2/m3) were tuned to fit NO2 and NO3 profiles in SBR cycle.