Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 133: 110937, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217689

RESUMO

BACKGROUND: Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS: In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS: CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS: These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Receptores Notch/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Ocludina/metabolismo , Permeabilidade , Regeneração/efeitos dos fármacos , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/metabolismo
2.
Mol Plant ; 5(1): 43-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21746698

RESUMO

Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Membrana Celular/química , Membrana Celular/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Terciária de Proteína , Solanum tuberosum/química , Solanum tuberosum/enzimologia , Solanum tuberosum/genética
3.
Mol Plant ; 3(6): 1064-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20924029

RESUMO

The plant sucrose transporter SUT1 (from Solanum tuberosum, S. lycopersicum, or Zea mays) exhibits redox-dependent dimerization and targeting if heterologously expressed in S. cerevisiae (Krügel et al., 2008). It was also shown that SUT1 is present in motile vesicles when expressed in tobacco cells and that its targeting to the plasma membrane is reversible. StSUT1 is internalized in the presence of brefeldin A (BFA) in yeast, plant cells, and in mature sieve elements as confirmed by immunolocalization. These results were confirmed here and the dynamics of intracellular SUT1 localization were further elucidated. Inhibitor studies revealed that vesicle movement of SUT1 is actin-dependent. BFA-mediated effects might indicate that anterograde vesicle movement is possible even in mature sieve elements, and could involve components of the cytoskeleton that were previously thought to be absent in SEs. Our results are in contradiction to this old dogma of plant physiology and the potential of mature sieve elements should therefore be re-evaluated. In addition, SUT1 internalization was found to be dependent on the plasma membrane lipid composition. SUT1 belongs to the detergent-resistant membrane (DRM) fraction in planta and is targeted to membrane raft-like microdomains when expressed in yeast (Krügel et al., 2008). Here, SUT1-GFP expression in different yeast mutants, which were unable to perform endocytosis and/or raft formation, revealed a strong link between SUT1 raft localization, the sterol composition and membrane potential of the yeast plasma membrane, and the capacity of the SUT1 protein to be internalized by endocytosis. The results provide new insight into the regulation of sucrose transport and the mechanism of endocytosis in plant cells.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nicotiana/metabolismo , Floema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Solanum , Actinas/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Expressão Gênica , Microdomínios da Membrana/metabolismo , Potenciais da Membrana , Floema/citologia , Floema/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Solanum/genética , Nicotiana/citologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA